Skip to main content

Advertisement

Log in

Environmental factors affecting the cyanogenic potential of flax seedlings

  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The levels of cyanogenic glucosides (linamarin and lotaustralin) and the activity of linamarase were studied in 5-day old seedlings of oil flax (Linum usitatissimum L., cv. LCSD 200) under different environmental conditions. White light enhanced the cyanoglucosides content, and this effect depended on its intensity and the time of exposure. The level of cyanoglucosides rose with temperature, and it reached the highest level at the highest temperature (30 °C).

Linamarase (EC. 3.2.1.21) activity was the highest at 20°C, especially in light-grown seedlings. Lower enzyme activity at the extreme temperature (15 and 30 °C) was observed.

Water stress (low water potential, ω=−0.34 MPa) reduced by more than twice the cyanoglucoside level and linamarase activity. The possible protective, or/and regulatory roles of cyanogenic glucosides was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

B:

blue (light)

HCN:

hydrogen cyanide

R:

red (light)

L:

white (light)

References

  • Bennet R.N., Wallsgrove R.M. 1994. Secondary metabolites in plant defence mechanism. New. Phytol. 127: 617–633.

    Article  Google Scholar 

  • Bergmeyer H.U., Bennet E. 1974. Methods of Enzymatic Analysis, 2nd edn. Ed. H.U. Bergmeyer. Academic Press Inc., London, vol.3: pp. 1205–1211.

    Google Scholar 

  • Bloom A.J., Chapin F.S., Mooney R.M. 1985. Resource limitation in plants—an economic analogy. Annu. Rev. Ecol. Syst. 16: 362–92.

    Google Scholar 

  • Bradford M.N. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Collinge D.B., Hughes M.A. 1982. Developmental and physiological studies on the cyanogenic glucosides of white clover, Trifolium repens L. J. Exp. Bot. 33: 154–161.

    Article  CAS  Google Scholar 

  • Conn E.E. 1981. Cyanogenic glycosides. — In The Biochemistry of plants: A comprehensive Treatise, Secondary Plant Products (P.K. Stumpf and E.E. Conn eds.) vol.7: 479–500. Acad. Press, New York.

    Google Scholar 

  • Cooper-Driver, G., S. Finch and T. Swain. 1977. Seasonal variation in secondary plant compounds in relation to the palatability of Pteridium aquilinum. Biochem. Syst. Ecol. 5: 177–183.

    Article  CAS  Google Scholar 

  • Cutler A.J., Conn E.E. 1981. The biosynthesis of cyanogenic glucosides in Linum usitatissimum (linen flax) in vitro. Arch. Bioch. Bioph. 212: 468–474.

    Article  CAS  Google Scholar 

  • Cutler A.J., Strenberg M., Conn E.E. 1985. Properties of a microsomal enzyme system from Linum usitatissimum (linen flax) which oxidizes valine to acetone cyanohydrin and isoleucine to 2-methylbutanone cyanohydrin. Arch. Bioch. Bioph. 238: 272–279.

    Article  CAS  Google Scholar 

  • Dziewanowska K., Niedźwiedź I., Chodelska I., Lewak St. 1979. Hydrogen cyanide and cyanogenic compounds in seeds. I. Influence of hydrogen cyanide on germination of apple embryos. Physiol. Veg. 17: 297–303.

    CAS  Google Scholar 

  • Ellis W.M., Keymer R.J., Jones D.A. 1977. The effect of temperature on the polymorphism of cyanogenesis in Lotus corniculatus L. Heredity 38:339–347.

    Google Scholar 

  • Fann T.W.M., Conn E.E. 1985. Isolation and characterisation of two cyanogenic β-glucosidases from flax seeds. Arch. Bioch. Bioph. 243: 361–373.

    Article  Google Scholar 

  • Forslung K., Jonsson L. 1997. Cyanogenic glycosides and their metabolic enzymes in barley, in relation to nitrogen levels. Physiol. Plant. 101: 367–372.

    Article  Google Scholar 

  • Fraser J., Nowak J. 1988. Studies on variability in white clover: growth habits and cyanogenic glucosides. Ann. Bot. 61: 311–318.

    CAS  Google Scholar 

  • Gaisser S., Heide L. 1996. Inhibition and regulation of shikoin biosynthesis in suspension cultures of Lithospermum. Phytochemistry. 41: 1065–1072.

    Article  CAS  Google Scholar 

  • Gleadow R.M., Woodrow I.E. 2000. Temporal and spatial variation in cyanogenic glycosides in Eucalyptus cladocalyx. Tree Physiology. 20: 591–598.

    PubMed  CAS  Google Scholar 

  • Hahlbrock K., Conn E.E. 1971. Evidence for the formation of linamarin and lotaustralin in flax seedlings by the same glucosyltransferase. Phytochemistry. 10: 1019–1023.

    Article  CAS  Google Scholar 

  • Hartmann T., Witte L., Ehmke A., Theuring C., Rowell-Rahier M., Pasteels J. M. 1997. Selective sequestration and metabolism of plant derived pyrrolizidine alkaloids by Chrysomelid leaf beetles. Phytochemistry 45: 489–497.

    Article  CAS  Google Scholar 

  • Heide L., Nishioka N., Fukui H., Tabata M. 1989. Enzymatic regulation of shikonin biosynthesis in Litospermum erythrorhizon cell cultures. Phytochemistry 28:1873–1877.

    Article  CAS  Google Scholar 

  • Hendricks S.B., Taylorson R.B. 1973. Promotion of seed germination by cyanide. Plant Physiol. 52:23–27.

    PubMed  Google Scholar 

  • Hughes M.A. 1991. The cyanogenic polymorphism in Trifolium repens L. (white clover). Heredity 66: 105–115.

    CAS  Google Scholar 

  • Jones D.A. 1988. Cyanogenesis in animal-plant interactions. In: Cyanide Compounds in Biology. Eds. D. Evered and S. Harnett. John Wiley & sons, Chichester, U.K., pp. 151–165.

    Google Scholar 

  • Jones D.A. 1998. Why are so many food plants cyanogenic? Phytochemistry 47: 155–162. (1998)

    Article  PubMed  CAS  Google Scholar 

  • Kakes P. 1990. Properties and functions of the cyanogenic system in higher plants. Euphytica 48: 25–43.

    CAS  Google Scholar 

  • Lieberei R., Selmar D., Biehl B. 1985. Metabolisation of cyanogenic glucosides in Hevea brasiliensis. Plant Syst. Evol. 150: 49–50.

    Article  CAS  Google Scholar 

  • Lieberei R., Nahrstedt A., Selmar D., Gasparotto L. 1986. The occurrence of lotaustralin in the genus Hevea and changes of HCN-potential in developing organs of Hevea brasiliensis. Phytochemistry 25: 1573–1578.

    Article  CAS  Google Scholar 

  • Michel B.E. 1983. Evaluation of the water potentials oof solutions of polyethylene glycol 8000 both in the absence and presence of other solutions. Plant Physiol. 72: 66–70.

    PubMed  CAS  Google Scholar 

  • Moller B.L., Poulton J.E. 1993. Cyanogenic glycosides. Methods in Plant Biochemistry 9: 183–207.

    Google Scholar 

  • Nahrstedt A., Kant J.-D., Hosel W. 1984. Aspect on the biosynthesis of the cyanogenic glucoside Triglochinin in Triglochin maritima. Planta Medica 36: 394–397.

    Article  Google Scholar 

  • Nahrstedt A. 1985. Cyanogenic compounds as protecting agents for organisms. Plant Syst. Evol. 150: 35–47.

    Article  CAS  Google Scholar 

  • Niedźwiedź-Siegień I. 1998. Cyanogenic glucosides in Linum usitatissimum. Phytochemistry 49: 59–63.

    Article  Google Scholar 

  • Oomah B.D., Mazza G., Kenaschuk E.O. 1992. Cyanogenic compounds in flaxseeds. J. Agric. Food Chem. 40: 1346–1348

    Article  CAS  Google Scholar 

  • Seigler D.S. 1991. Cyanide and Cyanogenic Glycosides. In: Herbivores: Their Interaction with Secondary Plant Metabolites (G.A. Rosenthal and M.R. Berenbaum, eds.), Academic Press, San Diego, vol.1, pp. 35–77

    Google Scholar 

  • Selmar D. 1993. Apoplastic occurrence of cyanogenic β-glucosidases and consequences for the metabolism of cyanogenic glucosides. Bioch. and Mol. Biol. of β-glucosidases, Esens ed., ASC Press, Washington, pp. 191–204.

    Google Scholar 

  • Selmar D., Grocholewski S., Seigler D.S. 1990. Cyanogenic lipids: Utilisation during seedling development of Ungnadia speciosa. Plant Physiol. 93:631–636.

    Article  PubMed  CAS  Google Scholar 

  • Selmar D., Lieberei R., Biehl B. 1988. Mobilisation and utilisation of cyanogenic glycosides. Plant Physiol. 86: 711–716.

    PubMed  CAS  Google Scholar 

  • Smith C.R., Weisleder D., Miller R.W. 1980. Linustatin and neolinustatin: cyanogenic glycosides of linseed meal that protect animal against selenium toxicity. J. Org. Chem. 45: 507–510.

    Article  CAS  Google Scholar 

  • Stochmal A., Oleszek. 1997: Changes in the cyanogenic glucosides in white clover (Trifolium repens L.) during the growing season. J. Agric. Food Chem. 45, 4333–4366.

    Article  CAS  Google Scholar 

  • Swain E., Poulton J.E. 1994. Utilisation of amygdalin during seedling development of Prunus serotina. Plant Physiol. 106:437–445.

    PubMed  CAS  Google Scholar 

  • Vickery P.J., Wheeler J.L., Mulcahy C. 1987. Factors affecting the hydrogen cyanide potential of white clover (Trifolium repens L.). Aust. J. Agric. Res. 38: 1053–1059.

    Article  CAS  Google Scholar 

  • Wink M. 1997. Compartmentation of secondary metabolites and xenobiotics in plant vacuoles. Adv. Bot. Res. 25:141–169.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niedźwiedź-Siegień, I., Gierasimiuk, A. Environmental factors affecting the cyanogenic potential of flax seedlings. Acta Physiol Plant 23, 383–390 (2001). https://doi.org/10.1007/s11738-001-0047-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-001-0047-4

Key words

Navigation