Skip to main content
Log in

Effect of styrene-butadiene-styrene copolymer on the aging resistance of asphalt: An atomistic understanding from reactive molecular dynamics simulations

  • Research Article
  • Published:
Frontiers of Structural and Civil Engineering Aims and scope Submit manuscript

Abstract

To reveal the potential influence of styrene-butadiene-styrene (SBS) polymer modification on the anti-aging performance of asphalt, and its mechanism, we explored the aging characteristics of base asphalt and SBS-modified asphalt by reaction force field (ReaxFF) and classical molecular dynamics simulations. The results illustrate that the SBS asphalt is more susceptible to oxidative aging than the base asphalt under oxygen-deficient conditions due to the presence of unsaturated C=C bonds in the SBS polymer. In the case of sufficient oxygen, the SBS polymer inhibits the oxidation of asphalt by restraining the diffusion of asphalt molecules. Compared with the base asphalt, the SBS asphalt exhibits a higher degree of oxidation at the early stage of pavement service and a lower degree of oxidation in the long run. In addition, SBS polymer degrades into small blocks during aging, thus counteracting the hardening of aged asphalt and partially restoring its low-temperature cracking resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DP:

degree of polymerization

EOL:

equivalent oxygen level

D :

diffusivity

MSD :

mean square displacement

CED:

cohesive energy density

η :

shear viscosity

λ :

mean free path

E system :

total energy of a system

E bond :

bond energy

E over :

over-coordination correction for energy

E under :

under-coordination correction for energy

E angle :

valence angle energy

E tors :

torsion angle energy

E conj :

conjugation effect

E vdW :

van der Waals energy

E Coulomb :

electrostatic energy

References

  1. Poulikakos L, Wang D, Porot L, Hofko B. Impact of asphalt aging temperature on chemo-mechanics. RSC Advances, 2019, 9(21): 11602–11613

    Article  Google Scholar 

  2. Mirwald J, Werkovits S, Camargo I, Maschauer D, Hofko B, Grothe H. Understanding bitumen ageing by investigation of its polarity fractions. Construction & Building Materials, 2020, 250: 118809

    Article  Google Scholar 

  3. Pahlavan F, Hung A M, Zadshir M, Hosseinnezhad S, Fini E H. Alteration of π-electron distribution to induce deagglomeration in oxidized polar aromatics and asphaltenes in an aged asphalt binder. ACS Sustainable Chemistry & Engineering, 2018, 6(5): 6554–6569

    Article  Google Scholar 

  4. Zhang J, Tan H, Pei J, Qu T, Liu W. Evaluating crack resistance of asphalt mixture based on essential fracture energy and fracture toughness. International Journal of Geomechanics, 2019, 19(4): 06019005

    Article  Google Scholar 

  5. Mousavi M, Pahlavan F, Oldham D, Hosseinnezhad S, Fini E H. Multiscale investigation of oxidative aging in biomodified asphalt binder. Journal of Physical Chemistry C, 2016, 120(31): 17224–17233

    Article  Google Scholar 

  6. Onifade I, Dinegdae Y, Birgisson B. Hierarchical approach for fatigue cracking performance evaluation in asphalt pavements. Frontiers of Structural and Civil Engineering, 2017, 11(3): 257–269

    Article  Google Scholar 

  7. Lyu L, Li D, Chen Y, Tian Y, Pei J. Dynamic chemistry based self-healing of asphalt modified by diselenide-crosslinked polyurethane elastomer. Construction & Building Materials, 2021, 293: 123480

    Article  Google Scholar 

  8. Leng Z, Padhan R K, Sreeram A. Production of a sustainable paving material through chemical recycling of waste PET into crumb rubber modified asphalt. Journal of Cleaner Production, 2018, 180: 682–688

    Article  Google Scholar 

  9. Guo F, Zhang J, Pei J, Ma W, Hu Z, Guan Y. Evaluation of the compatibility between rubber and asphalt based on molecular dynamics simulation. Frontiers of Structural and Civil Engineering, 2020, 14(2): 435–445

    Article  Google Scholar 

  10. Sugano M, Iwabuchi Y, Watanabe T, Kajita J, Iwata K, Hirano K. Relations between thermal degradations of SBS copolymer and asphalt substrate in polymer modified asphalt. Clean Technologies and Environmental Policy, 2010, 12(6): 653–659

    Article  Google Scholar 

  11. Cong P, Zhang Y, Liu N. Investigation of the properties of asphalt mixtures incorporating reclaimed SBS modified asphalt pavement. Construction & Building Materials, 2016, 113: 334–340

    Article  Google Scholar 

  12. Zhang H, Chen Z, Xu G, Shi C. Evaluation of aging behaviors of asphalt binders through different rheological indices. Fuel, 2018, 221: 78–88

    Article  Google Scholar 

  13. Sun L, Wang Y, Zhang Y. Aging mechanism and effective recycling ratio of SBS modified asphalt. Construction & Building Materials, 2014, 70: 26–35

    Article  Google Scholar 

  14. Woo W J, Hilbrich J M, Glover C J. Loss of polymer-modified binder durability with oxidative aging: Base binder stiffening versus polymer degradation. Transportation Research Record: Journal of the Transportation Research Board, 2007, 1998(1): 38–46

    Article  Google Scholar 

  15. Petersen J C. A Review of the Fundamentals of Asphalt Oxidation: Chemical, Physicochemical, Physical Property, and Durability Relationships. Washington, D.C.: Transportation Research Circular, 2009, E–C140

    Google Scholar 

  16. Cui B, Gu X, Wang H, Hu D. Numerical and experimental evaluation of adhesion properties of asphalt-aggregate interfaces using molecular dynamics simulation and atomic force microscopy. Road Materials and Pavement Design, 2021: 1–21

  17. Zhao X, Wang S, Wang Q, Yao H. Rheological and structural evolution of SBS modified asphalts under natural weathering. Fuel, 2016, 184: 242–247

    Article  Google Scholar 

  18. Yut I, Zofka A. Attenuated total reflection (ATR) Fourier transform infrared (FT-IR) spectroscopy of oxidized polymer-modified bitumens. Applied Spectroscopy, 2011, 65(7): 765–770

    Article  Google Scholar 

  19. Ruan Y, Davison R R, Glover C J. Oxidation and viscosity hardening of polymer-modified asphalts. Energy & Fuels, 2003, 17(4): 991–998

    Article  Google Scholar 

  20. Weng S. Fourier Transform Infrared Spectroscopy. Beijing: Chemical Industry Press, 2010 (in Chinese)

    Google Scholar 

  21. Senftle T P, Hong S, Islam M M, Kylasa S B, Zheng Y, Shin Y K, Junkermeier C, Engel-Herbert R, Janik M J, Aktulga H M, Verstraelen T, Grama A, van Duin A C. The ReaxFF reactive force-field: Development, applications and future directions. npj Computational Materials, 2016, 2(1): 1–14

    Article  Google Scholar 

  22. Monari A, Rivail J L, Assfeld X. Theoretical modeling of large molecular systems. Advances in the local self consistent field method for mixed quantum mechanics/molecular mechanics calculations. Accounts of Chemical Research, 2013, 46(2): 596–603

    Article  Google Scholar 

  23. Hu D, Gu X, Cui B, Pei J, Zhang Q. Modeling the oxidative aging kinetics and pathways of asphalt: A ReaxFF molecular dynamics study. Energy & Fuels, 2020, 34(3): 3601–3613

    Article  Google Scholar 

  24. Zhang L, Greenfield M L. Analyzing properties of model asphalts using molecular simulation. Energy & Fuels, 2007, 21(3): 1712–1716

    Article  Google Scholar 

  25. Guo M, Tan Y, Wang L, Hou Y. A state-of-the-art review on interfacial behavior between asphalt binder and mineral aggregate. Frontiers of Structural and Civil Engineering, 2018, 12(2): 248–259

    Article  Google Scholar 

  26. Hu D, Pei J, Li R, Zhang J, Jia Y, Fan Z. Using thermodynamic parameters to study self-healing and interface properties of crumb rubber modified asphalt based on molecular dynamics simulation. Frontiers of Structural and Civil Engineering, 2020, 14(1): 109–122

    Article  Google Scholar 

  27. Sun H, Jin Z, Yang C, Akkermans R L, Robertson S H, Spenley N A, Miller S, Todd S M. COMPASS II: Extended coverage for polymer and drug-like molecule databases. Journal of Molecular Modeling, 2016, 22(2): 47

    Article  Google Scholar 

  28. Cui B, Gu X, Hu D, Dong Q. A multiphysics evaluation of the rejuvenator effects on aged asphalt using molecular dynamics simulations. Journal of Cleaner Production, 2020, 259: 120629

    Article  Google Scholar 

  29. Xu G, Wang H. Molecular dynamics study of oxidative aging effect on asphalt binder properties. Fuel, 2017, 188: 1–10

    Article  Google Scholar 

  30. Chenoweth K, van Duin A C, Goddard W A. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. Journal of Physical Chemistry A, 2008, 112(5): 1040–1053

    Article  Google Scholar 

  31. van Duin A C, Dasgupta S, Lorant F, Goddard W A. ReaxFF: A reactive force field for hydrocarbons. Journal of Physical Chemistry A, 2001, 105(41): 9396–9409

    Article  Google Scholar 

  32. Strachan A, van Duin A C, Chakraborty D, Dasgupta S, Goddard W A III. Shock waves in high-energy materials: The initial chemical events in nitramine RDX. Physical Review Letters, 2003, 91(9): 098301

    Article  Google Scholar 

  33. Castro-Marcano F, Kamat A M, Russo M F Jr, van Duin A C, Mathews J P. Combustion of an Illinois No. 6 coal char simulated using an atomistic char representation and the ReaxFF reactive force field. Combustion and Flame, 2012, 159(3): 1272–1285

    Article  Google Scholar 

  34. Corbett L W. Composition of asphalt based on generic fractionation, using solvent deasphaltening, elution-adsorption chromatography, and densimetric characterization. Analytical Chemistry, 1969, 41(4): 576–579

    Article  Google Scholar 

  35. Li D D, Greenfield M L. Chemical compositions of improved model asphalt systems for molecular simulations. Fuel, 2014, 115: 347–356

    Article  Google Scholar 

  36. Rasool R, Hongru Y, Hassan A, Wang S, Zhang H. In-field aging process of high content SBS modified asphalt in porous pavement. Polymer Degradation & Stability, 2018, 155: 220–229

    Article  Google Scholar 

  37. Lin P, Yan C, Huang W, Li Y, Zhou L, Tang N, Xiao F, Zhang Y, Lv Q. Rheological, chemical and aging characteristics of high content polymer modified asphalt. Construction & Building Materials, 2019, 207: 616–629

    Article  Google Scholar 

  38. Sugano M, Kajita J, Ochiai M, Takagi N, Iwai S, Hirano K. Mechanisms for chemical reactivity of two kinds of polymer modified asphalts during thermal degradation. Chemical Engineering Journal, 2011, 176–177: 231–236

    Article  Google Scholar 

  39. Mirwald J, Werkovits S, Camargo I, Maschauer D, Hofko B, Grothe H. Investigating bitumen long-term-ageing in the laboratory by spectroscopic analysis of the SARA fractions. Construction & Building Materials, 2020, 258: 119577

    Article  Google Scholar 

  40. Xue Y, Hu Z, Wang C, Xiao Y. Evaluation of dissolved organic carbon released from aged asphalt binder in aqueous solution. Construction & Building Materials, 2019, 218: 465–476

    Article  Google Scholar 

  41. Plimpton S. Fast parallel algorithms for short-range molecular dynamics. Journal of computational physics, 1995, 117(1): 1–19

    Article  MATH  Google Scholar 

  42. Zhang L, Song Z, Zhao B, Villarreal E, Ban H. Fast atom effect on helium gas/graphite interfacial energy transfer. Carbon, 2020, 161: 206–218

    Article  Google Scholar 

  43. AASHTO. Standard Method of Test for Effect of Heat and Air on a Moving Film of Asphalt (Rolling Thin-Film Oven Test). Washington, D.C.: American Association of State Highway and Transportation Officials, 2013

    Google Scholar 

  44. AASHTO. Standard Method of Test for Accelerated Aging of Asphalt Binder Using a Pressurized Aging Vessel (PAV). Washington, D.C.: American Association of State Highway and Transportation Officials, 2012

    Google Scholar 

  45. Sun D, Lin T, Zhu X, Tian Y, Liu F. Indices for self-healing performance assessments based on molecular dynamics simulation of asphalt binders. Computational Materials Science, 2016, 114: 86–93

    Article  Google Scholar 

  46. Biovia Inc. San Diego C. Materials Studio, version 7.0. 2013

  47. Airey G D. Rheological properties of styrene butadiene styrene polymer modified road bitumens. Fuel, 2003, 82(14): 1709–1719

    Article  Google Scholar 

  48. Lutišan J, Cvengroš J. Mean free path of molecules on molecular distillation. Chemical Engineering Journal and the Biochemical Engineering Journal, 1995, 56(2): 39–50

    Article  Google Scholar 

  49. Liu B, Vu-Bac N, Zhuang X, Rabczuk T. Stochastic multiscale modeling of heat conductivity of Polymeric clay nanocomposites. Mechanics of Materials, 2020, 142: 103280

    Article  Google Scholar 

  50. Vu-Bac N, Lahmer T, Keitel H, Zhao J, Zhuang X, Rabczuk T. Stochastic predictions of bulk properties of amorphous polyethylene based on molecular dynamics simulations. Mechanics of Materials, 2014, 68: 70–84

    Article  Google Scholar 

  51. Vu-Bac N, Lahmer T, Zhang Y, Zhuang X, Rabczuk T. Stochastic predictions of interfacial characteristic of polymeric nanocomposites (PNCs). Composites. Part B, Engineering, 2014, 59: 80–95

    Article  Google Scholar 

  52. Humphrey W, Dalke A, Schulten K. VMD: Visual molecular dynamics. Journal of Molecular Graphics, 1996, 14(1): 33–38

    Article  Google Scholar 

  53. Qu X, Liu Q, Guo M, Wang D, Oeser M. Study on the effect of aging on physical properties of asphalt binder from a microscale perspective. Construction & Building Materials, 2018, 187: 718–729

    Article  Google Scholar 

  54. Wei J, Dong F, Li Y, Zhang Y. Relationship analysis between surface free energy and chemical composition of asphalt binder. Construction & Building Materials, 2014, 71: 116–123

    Article  Google Scholar 

  55. Wang P, Dong Z, Tan Y, Liu Z. Investigating the interactions of the saturate, aromatic, resin, and asphaltene four fractions in asphalt binders by molecular simulations. Energy & Fuels, 2015, 29(1): 112–121

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the financial support of the National Natural Science Foundation of China (Grant No. 51878162), the Scientific Research Foundation of Graduate School of South-east University (No. YBPY2043), and the Innovation and Development Foundation of Tibet Tianlu Co., Ltd. (No. XZ 2019 TL-G-01). The authors also appreciate the support of the Materials Studio software by the National Supercomputing Center in Shenzhen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingyu Gu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, D., Gu, X. & Cui, B. Effect of styrene-butadiene-styrene copolymer on the aging resistance of asphalt: An atomistic understanding from reactive molecular dynamics simulations. Front. Struct. Civ. Eng. 15, 1261–1276 (2021). https://doi.org/10.1007/s11709-021-0761-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11709-021-0761-5

Keywords

Navigation