Skip to main content
Log in

An investigation on prevalent strategies for XFEM-based numerical modeling of crack growth in porous media

  • Research Article
  • Published:
Frontiers of Structural and Civil Engineering Aims and scope Submit manuscript

Abstract

Crack growth modeling has always been one of the major challenges in fracture mechanics. Among all numerical methods, the extended finite element method (XFEM) has recently attracted much attention due to its ability to estimate the discontinuous deformation field. However, XFEM modeling does not directly lead to reliable results, and choosing a strategy of implementation is inevitable, especially in porous media. In this study, two prevalent XFEM strategies are evaluated: a) applying reduced Young’s modulus to pores and b) using different partitions to the model and enriching each part individually. We mention the advantages and limitations of each strategy via both analytical and experimental validations. Finally, the crack growth is modeled in a natural porous media (Fontainebleau sandstone). Our investigations proved that although both strategies can identically predict the stress distribution in the sample, the first strategy simulates only the initial crack propagation, while the second strategy could model multiple cracks growths. Both strategies are reliable and highly accurate in calculating the stress intensity factor, but the second strategy can compute a more reliable reaction force. Experimental tests showed that the second strategy is a more accurate strategy in predicting the preferred crack growth path and determining the maximum strength of the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chang S H, Lee C I, Jeon S. Measurement of rock fracture toughness under modes I and II and mixed-mode conditions by using disc-type specimens. Engineering Geology, 2002, 66(1–2): 79–97

    Article  Google Scholar 

  2. Hoek E, Martin C D. Fracture initiation and propagation in intact rock—A review. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6(4): 287–300

    Article  Google Scholar 

  3. Lisjak A, Kaifosh P, He L, Tatone B S A, Mahabadi O K, Grasselli G. A 2D, fully-coupled, hydro-mechanical, FDEM formulation for modelling fracturing processes in discontinuous, porous rock masses. Computers and Geotechnics, 2017, 81: 1–18

    Article  Google Scholar 

  4. Jing L, Hudson J A. Numerical methods in rock mechanics. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(4): 409–427

    Article  Google Scholar 

  5. Cundall P A. A computer model for simulating progressive large scale movements in blocky rock systems. In: Proceedings of the International Symposium on Rock Mechanics. Nancy: International Society for Rock Mechanics, 1971

    Google Scholar 

  6. Lisjak A, Grasselli G. A review of discrete modeling techniques for fracturing processes in discontinuous rock masses. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6(4): 301–314

    Article  Google Scholar 

  7. Wang S Y, Sloan S W, Sheng D C, Yang S Q, Tang C A. Numerical study of failure behaviour of pre-cracked rock specimens under conventional triaxial compression. International Journal of Solids and Structures, 2014, 51(5): 1132–1148

    Article  Google Scholar 

  8. Kato T, Nishioka T. Analysis of micro-macro material properties and mechanical effects of damaged material containing periodically distributed elliptical microcracks. International Journal of Fracture, 2005, 131(3): 247–266

    Article  MATH  Google Scholar 

  9. Rezanezhad M, Lajevardi S A, Karimpouli S. Effects of pore(s)-crack locations and arrangements on crack growth modeling in porous media. Theoretical and Applied Fracture Mechanics, 2020, 107: 102529

    Article  Google Scholar 

  10. Rodriguez-Florez N. Mechanics of cortical bone: Exploring the micro- and nano-scale. Dissertation for the Doctoral Degree. London: Imperial College London, 2015

    Google Scholar 

  11. Duarte A P C, Silva B A, Silvestre N, de Brito J, Júlio E. Mechanical characterization of rubberized concrete using an Image-Processing/XFEM coupled procedure. Composites Part B: Engineering, 2015, 78: 214–226

    Article  Google Scholar 

  12. Duarte A P C, Silvestre N, de Brito J, Júlio E. Numerical study of the compressive mechanical behaviour of rubberized concrete using the extended finite element method (XFEM). Composite Structures, 2017, 179: 132–145

    Article  Google Scholar 

  13. Supar K, Ahmad H. XFEM Modelling of Multi-holes Plate with Single-row and Staggered Holes Configurations. In: International Symposium on Civil and Environmental Engineering 2016 (ISCEE 2016). Wuhan: MATEC Web of Conferences, 2017

    Google Scholar 

  14. Rezanezhad M, Lajevardi S A, Karimpouli S. Application of equivalent circle and ellipse for pore shape modeling in crack growth problem: A numerical investigation in microscale. Engineering Fracture Mechanics, 2021, 253: 107882

    Article  Google Scholar 

  15. Hedjazi L, Guessasma S, Della Valle G, Benseddiq N. How cracks propagate in a vitreous dense biopolymer material. Engineering Fracture Mechanics, 2011, 78(6): 1328–1340

    Article  Google Scholar 

  16. Hedjazi L, Martin C L, Guessasma S, Della Valle G, Dendievel R. Application of the Discrete Element Method to crack propagation and crack branching in a vitreous dense biopolymer material. International Journal of Solids and Structures, 2012, 49(13): 1893–1899

    Article  Google Scholar 

  17. Chen M, Wang H, Jin H, Pan X, Jin Z. Effect of pores on crack propagation behavior for porous Si3N4 ceramics. Ceramics International, 2016, 42(5): 5642–5649

    Article  Google Scholar 

  18. Rodriguez-Florez N, Carriero A, Shefelbine S J. The use of XFEM to assess the influence of intra-cortical porosity on crack propagation. Computer Methods in Biomechanics and Biomedical Engineering, 2017, 20(4): 385–392

    Article  Google Scholar 

  19. Rezanezhad M, Lajevardi S A, Karimpouli S. Effects of pore-crack relative location on crack propagation in porous media using XFEM method. Theoretical and Applied Fracture Mechanics, 2019, 103: 102241

    Article  Google Scholar 

  20. Rabczuk T, Belytschko T. Cracking particles: A simplified meshfree method for arbitrary evolving cracks. International Journal for Numerical Methods in Engineering, 2004, 61(13): 2316–2343

    Article  MATH  Google Scholar 

  21. Rabczuk T, Belytschko T. A three-dimensional large deformation meshfree method for arbitrary evolving cracks. Computer Methods in Applied Mechanics and Engineering, 2007, 196(29–30): 2777–2799

    Article  MathSciNet  MATH  Google Scholar 

  22. Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H. A simple and robust three-dimensional cracking-particle method without enrichment. Computer Methods in Applied Mechanics and Engineering, 2010, 199(37–40): 2437–2455

    Article  MATH  Google Scholar 

  23. Ren H, Zhuang X, Rabczuk T. Dual-horizon peridynamics: A stable solution to varying horizons. Computer Methods in Applied Mechanics and Engineering, 2017, 318: 762–782

    Article  MathSciNet  MATH  Google Scholar 

  24. Ren H L, Zhuang X Y, Anitescu C, Rabczuk T. An explicit phase field method for brittle dynamic fracture. Computers & Structures, 2019, 217: 45–56

    Article  Google Scholar 

  25. Ren H, Zhuang X, Rabczuk T. A higher order nonlocal operator method for solving partial differential equations. Computer Methods in Applied Mechanics and Engineering, 2020, 367: 113132

    Article  MathSciNet  MATH  Google Scholar 

  26. Areias P, Msekh M A, Rabczuk T. Damage and fracture algorithm using the screened Poisson equation and local remeshing. Engineering Fracture Mechanics, 2016, 158: 116–143

    Article  Google Scholar 

  27. Lehoucq R B, Silling S A. Force flux and the peridynamic stress tensor. Journal of the Mechanics and Physics of Solids, 2008, 56(4): 1566–1577

    Article  MathSciNet  MATH  Google Scholar 

  28. Karimpouli S, Tahmasebi P. A hierarchical sampling for capturing permeability trend in rock physics. Transport in Porous Media, 2017, 116(3): 1057–1072

    Article  MathSciNet  Google Scholar 

  29. Karimpouli S, Tahmasebi P, Saenger E H. Estimating 3D elastic moduli of rock from 2D thin-section images using differential effective medium theory. Geophysics, 2018, 83(4): MR211–MR219

    Article  Google Scholar 

  30. Hillerborg A, Modéer M, Petersson P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research, 1976, 6(6): 773–781

    Article  Google Scholar 

  31. Asadpoure A, Mohammadi S, Vafai A. Crack analysis in orthotropic media using the extended finite element method. Thin-walled Structures, 2006, 44(9): 1031–1038

    Article  Google Scholar 

  32. Mohammadi S. Extended Finite Element Method: For Fracture Analysis of Structures, Oxford: Blackwell Publishing Ltd, 2008

    Book  MATH  Google Scholar 

  33. Sharafisafa M, Nazem M. Application of the distinct element method and the extended finite element method in modelling cracks and coalescence in brittle materials. Computational Materials Science, 2014, 91: 102–121

    Article  Google Scholar 

  34. Moës N, Belytschko T. Extended finite element method for cohesive crack growth. Engineering fracture mechanics, 2002, 69(7): 813–833

    Article  Google Scholar 

  35. Giner E, Sukumar N, Tarancón J E, Fuenmayor F J. An Abaqus implementation of the extended finite element method. Engineering Fracture Mechanics, 2009, 76(3): 347–368

    Article  Google Scholar 

  36. Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601–620

    Article  MATH  Google Scholar 

  37. Dolbow J, Moës N, Belytschko T. An extended finite element method for modeling crack growth with frictional contact. Computer Methods in Applied Mechanics and Engineering, 2001, 190(51–52): 6825–6846

    Article  MathSciNet  MATH  Google Scholar 

  38. Li L, Wang M Y, Wei P. XFEM schemes for level set based structural optimization. Frontiers of Mechanical Engineering, 2012, 7(4): 335–356

    Article  Google Scholar 

  39. Moës N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 1999, 46(1): 131–150

    Article  MathSciNet  MATH  Google Scholar 

  40. Moës N, Cloirec M, Cartraud P, Remacle J F. A computational approach to handle complex microstructure geometries. Computer Methods in Applied Mechanics and Engineering, 2003, 192(28–30): 3163–3177

    Article  MATH  Google Scholar 

  41. Zhu Q Z. On enrichment functions in the extended finite element method. International Journal for Numerical Methods in Engineering, 2012, 91(2): 186–217

    Article  MathSciNet  MATH  Google Scholar 

  42. Agathos K, Chatzi E, Bordas S P A. Multiple crack detection in 3D using a stable XFEM and global optimization. Computational Mechanics, 2018, 62(4): 835–852

    Article  MathSciNet  MATH  Google Scholar 

  43. Sih G C. Methods of Analysis and Solution of Crack Problems. Leyden: Noordhoff International Publishing, 1973

    Book  MATH  Google Scholar 

  44. Anderson T L. Fracture Mechanics: Fundamentals and Applications. 3rd ed. Boca Raton: Taylor and Francis, 2005

    Book  MATH  Google Scholar 

  45. Arshadnejad S. Analysis of the first cracks generating between two holes under incremental static loading with an innovation method by numerical modelling. Mathematics and Computer Science, 2017, 2(6): 120–129

    Article  Google Scholar 

  46. Zhang Z. An empirical relation between mode I fracture toughness and the tensile strength of rock. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(3): 401–406

    Article  Google Scholar 

  47. Bažant Z P, Kazemi M T. Size effect in fracture of ceramics and its use to determine fracture energy and effective process zone length. Journal of the American Ceramic Society, 1990, 73(7): 1841–1853

    Article  Google Scholar 

  48. Marshall G P, Williams J G, Turner C E. Fracture toughness and absorbed energy measurements in impact tests on brittle materials G. Journal of Materials Science, 1973, 8(7): 949–956

    Article  Google Scholar 

  49. Nasaj Moghaddam H, Keyhani A, Aghayan I. Modelling of crack propagation in layered structures using extended finite element method. Civil Engineering Journal, 2016, 2(5): 180–188

    Article  Google Scholar 

  50. Zhang C, Cao P, Cao Y, Li J. Using finite element software to simulation fracture behavior of three-point bending beam with initial crack. Journal of Software, 2013, 8(5): 1145–1150

    Article  Google Scholar 

  51. Abdellah M Y. Delamination modeling of double cantilever beam of unidirectional composite laminates. Journal of Failure Analysis and Prevention, 2017, 17(5): 1011–1018

    Article  Google Scholar 

  52. Grigoriu M, Saif M T A, El Borgi S, Ingraffea A R. Mixed mode fracture initiation and trajectory prediction under random stresses. International Journal of Fracture, 1990, 45(1): 19–34

    Article  Google Scholar 

  53. S. Moaveni, Finite Element Analysis: Theory and Application with ANSYS. Hoboken: Prentice Hall, 1999

    Google Scholar 

  54. Troyani N, Pérez A, Baíz P. Effect of finite element mesh orientation on solution accuracy for torsional problems. Finite Elements in Analysis and Design, 2005, 41(14): 1377–1383

    Article  Google Scholar 

  55. Logan D L. A First Course in the Finite Element Method. 4th ed. Toronto: Nelson, 2007

    Google Scholar 

  56. Song J, Belytschko T. Cracking node method for dynamic fracture with finite elements. International Journal for Numerical Methods in Engineering, 2009, 77(3): 360–385

    Article  MathSciNet  MATH  Google Scholar 

  57. Linder C, Armero F. Finite elements with embedded branching. Finite Elements in Analysis and Design, 2009, 45(4): 280–293

    Article  MathSciNet  MATH  Google Scholar 

  58. Li X, Konietzky H. Simulation of time-dependent crack growth in brittle rocks under constant loading conditions. Engineering Fracture Mechanics, 2014, 119: 53–65

    Article  Google Scholar 

  59. Andrä H, Combaret N, Dvorkin J, Glatt E, Han J, Kabel M, Keehm Y, Krzikalla F, Lee M, Madonna C, Marsh M, Mukerji T, Saenger E H, Sain R, Saxena N, Ricker S, Wiegmann A, Zhan X. Digital rock physics benchmarks—Part I: Imaging and segmentation. Computers & Geosciences, 2013, 50: 25–32

    Article  Google Scholar 

  60. Madonna C, Quintal B, Frehner M, Almqvist B S G, Tisato N, Pistone M, Marone F, Saenger E H. Synchrotron-based X-ray tomographic microscopy for rock physics investigations. Geophysics, 2013, 78(1): D53–D64

    Article  Google Scholar 

  61. Huang J Q, Huang Q A, Qin M, Dong W J, Chen X W. Experimental study on the dielectrostriction of SiO2 with a micro-fabricated cantilever. In: IEEE Sensors 2009 Conference. Christchurch: IEEE, 2009

    Google Scholar 

  62. Karimpouli S, Tahmasebi P, Saenger E H. Coal cleat/fracture segmentation using convolutional neural networks. Natural Resources Research, 2020, 29(3): 1675–1685

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Ahmad Lajevardi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezanezhad, M., Lajevardi, S.A. & Karimpouli, S. An investigation on prevalent strategies for XFEM-based numerical modeling of crack growth in porous media. Front. Struct. Civ. Eng. 15, 914–936 (2021). https://doi.org/10.1007/s11709-021-0750-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11709-021-0750-8

Keywords

Navigation