Skip to main content
Log in

Fracture model for the prediction of the electrical percolation threshold in CNTs/Polymer composites

  • Research Article
  • Published:
Frontiers of Structural and Civil Engineering Aims and scope Submit manuscript

Abstract

In this paper, we propose a 3D stochastic model to predict the percolation threshold and the effective electric conductivity of CNTs/Polymer composites. We consider the tunneling effect in our model so that the unrealistic interpenetration can be avoided in the identification of the conductive paths between the CNTs inside the polymer. The results are shown to be in good agreement with reported experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sandler J, Shaffer M S P, Prasse T, Bauhofer W, Schulte K, Windle A H. Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer, 1999, 40(21): 5967–5971

    Article  Google Scholar 

  2. Michael G H, Tejas N. Radiofrequency interaction with conductive colloids: permittivity and electrical conductivity of single-wall carbon nanotubes in sallne. Bioelectromagnetics, 2010, 31(8): 582–588

    Article  Google Scholar 

  3. Martin C A, Sandler J K W, ShafferMS P, Schwarz M K, Bauhofer W, Schulte K, Windle A H. Formation of percolating networks in multi-wall carbon-nanotube–epoxy composites. Composites Science and Technology, 2004, 64(15): 2309–2316

    Article  Google Scholar 

  4. Bauhofer W, Kovacs J Z. A review and analysis of electrical percolation in carbon nanotube polymer composites. Composites Science and Technology, 2009, 69(10): 1486–1498

    Article  Google Scholar 

  5. Bryning M B, Islam M F, Kikkawa J M, Yodh A G. Very low conductivity threshold in bulk isotropic single-walled carbon nanotube–epoxy composites. Advanced Materials, 2005, 17(9): 1186–1191

    Article  Google Scholar 

  6. Ounaies Z, Park C, Wise K E, Siochi E J, Harrison J S. Electrical properties of single wall carbon nanotube reinforced polyimide composites. Composites Science and Technology, 2003, 63(11): 1637–1646

    Article  Google Scholar 

  7. Kymakis E, Amaratunga G A J. Electrical properties of single-wall carbon nanotube-polymer composite films. Journal of Applied Physics, 2006, 99(8): 56

    Article  Google Scholar 

  8. Ramasubramaniam R, Chen J, Liu H. Homogeneous carbon nanotube/polymer composites for electrical applications. Applied Physics Letters, 2003, 83(14): 2928–2930

    Article  Google Scholar 

  9. Griebel M, Hamaekers J. Molecular dynamics simulations of the elastic moduli of polymer–carbon nanotube composites. Computer Methods in Applied Mechanics and Engineering, 2004, 193(17): 1773–1788

    Article  MathSciNet  MATH  Google Scholar 

  10. Frankland S J V, Caglar A, Brenner D W, Griebel M. Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube-polymer interfaces. Journal of Physical Chemistry B, 2002, 106(12): 3046–3048

    Article  Google Scholar 

  11. Zhu R, Pan E, Roy A K. Molecular dynamics study of the stress–strain behavior of carbon-nanotube reinforced epon 862 composites. Materials Science and Engineering A, 2007, 447(1): 51–57

    Article  Google Scholar 

  12. Arash B, Park H S, Rabczuk T. Mechanical properties of carbon nanotube reinforced polymer nanocomposites: A coarse-grained model. Composites. Part B, Engineering, 2015, 80: 92–100

    Article  Google Scholar 

  13. Quayum M S, Zhuang X, Rabczuk T. Computational model generation and rve design of self-healing concrete. Journal of Contemporary Physics, 2015, 50(4): 383–396

    Google Scholar 

  14. Mortazavi B, Baniassadi M, Bardon J, Ahzi S. Modeling of twophase random composite materials by finite element, mori–tanaka and strong contrast methods. Composites. Part B, Engineering, 2013, 45(1): 1117–1125

    Article  Google Scholar 

  15. Mortazavi B, Bardon J, Ahzi S. Interphase effect on the elastic and thermal conductivity response of polymer nanocomposite materials: 3d finite element study. Computational Materials Science, 2013, 69: 100–106

    Article  Google Scholar 

  16. Hamdia K M, Msekh M A, Silani M, Vu-Bac N, Zhuang X, Nguyen-Thoi T, Rabczuk T. Uncertainty quantification of the fracture properties of polymeric nanocomposites based on phase field modeling. Composite Structures, 2015, 133: 1177–1190

    Article  Google Scholar 

  17. Silani M, Talebi H, Ziaei-Rad S, Kerfriden P, Bordas S P A, Rabczuk T. Stochastic modelling of clay/epoxy nanocomposites. Composite Structures, 2014, 118: 241–249

    Article  Google Scholar 

  18. Vu-Bac N, Lahmer T, Zhang Y, Zhuang X, Rabczuk T. Stochastic predictions of interfacial characteristic of polymeric nanocomposites (pncs). Composites. Part B, Engineering, 2014, 59: 80–95

    Article  Google Scholar 

  19. Ghasemi H, Brighenti R, Zhuang X, Muthu J, Rabczuk T. Optimization of fiber distribution in fiber reinforced composite by using nurbs functions. Computational Materials Science, 2014, 83: 463–473

    Article  Google Scholar 

  20. Vu-Bac N, Rafiee R, Zhuang X, Lahmer T, Rabczuk T. Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters. Composites. Part B, Engineering, 2015, 68: 446–464

    Article  Google Scholar 

  21. Ghasemi H, Brighenti R, Zhuang X, Muthu J, Rabczuk T. Optimal fiber content and distribution in fiber-reinforced solids using a reliability and nurbs based sequential optimization approach. Structural and Multidisciplinary Optimization, 2015, 51(1): 99–112

    Article  MathSciNet  Google Scholar 

  22. Vu-Bac N, Lahmer T, Zhuang X, Nguyen-Thoi T, Rabczuk T. A software framework for probabilistic sensitivity analysis for computationally expensive models. Advances in Engineering Software, 2016, 100: 19–31

    Article  Google Scholar 

  23. Vu-Bac N, Silani M, Lahmer T, Zhuang X, Rabczuk T. A unified framework for stochastic predictions of mechanical properties of polymeric nanocomposites. Computational Materials Science, 2015, 96(PB):520–535

    Article  Google Scholar 

  24. Msekh M A, Silani M, Jamshidian M, Areias P, Zhuang X, Zi G, He P, Rabczuk T. Predictions of j integral and tensile strength of clay/epoxy nanocomposites material using phase field model. Composites. Part B, Engineering, 2016, 93: 97–114

    Article  Google Scholar 

  25. Hamdia K M, Zhuang X, He P, Rabczuk T. Fracture toughness of polymeric particle nanocomposites: Evaluation of models performance using bayesian method. Composites Science and Technology, 2016, 126: 122–129

    Article  Google Scholar 

  26. Ben Dhia H. Multiscale mechanical problems: the arlequin method. Comptes Rendus de l’Academie des Sciences Series IIB Mechanics Physics Astronomy, 1998, 326(12): 899–904

    Article  MATH  Google Scholar 

  27. Dhia H B, Rateau G. The arlequin method as a flexible engineering design tool. International Journal for Numerical Methods in Engineering, 2005, 62(11): 1442–1462

    Article  MATH  Google Scholar 

  28. Xiao S P, Belytschko T. A bridging domain method for coupling continua with molecular dynamics. Computer Methods in Applied Mechanics and Engineering, 2004, 193(17): 1645–1669

    Article  MathSciNet  MATH  Google Scholar 

  29. Wagner G J, Liu W K. Coupling of atomistic and continuum simulations using a bridging scale decomposition. Journal of Computational Physics, 2003, 190(1): 249–274

    Article  MATH  Google Scholar 

  30. Tadmor E B, Ortiz M, Phillips R. Quasicontinuum analysis of defects in solids. Philosophical Magazine A, 1996, 73(6): 1529–1563

    Article  Google Scholar 

  31. Shenoy V B, Miller R, Tadmor E B, Rodney D, Phillips R, Ortiz M. An adaptive finite element approach to atomic-scale mechanicsthe quasicontinuum method. Journal of the Mechanics and Physics of Solids, 1999, 47(3): 611–642

    Article  MathSciNet  MATH  Google Scholar 

  32. Talebi H, Silani M, Bordas S P A, Kerfriden P, Rabczuk T. A computational library for multiscale modeling of material failure. Computational Mechanics, 2014, 53(5): 1047–1071

    Article  MathSciNet  MATH  Google Scholar 

  33. Silani M, Talebi H, Hamouda A M, Rabczuk T. Nonlocal damage modelling in clay/epoxy nanocomposites using a multiscale approach. Journal of Computational Science, 2016, 15: 18–23

    Article  Google Scholar 

  34. Budarapu P R, Gracie R, Yang SW, Zhuang X, Rabczuk T. Efficient coarse graining in multiscale modeling of fracture. Theoretical and Applied Fracture Mechanics, 2014, 69: 126–143

    Article  Google Scholar 

  35. Silani M, Ziaei-Rad S, Talebi H, Rabczuk T. A semi-concurrent multiscale approach for modeling damage in nanocomposites. Theoretical and Applied Fracture Mechanics, 2014, 74(1): 30–38

    Article  Google Scholar 

  36. Talebi H, Silani M, Rabczuk T. Concurrent multiscale modeling of three dimensional crack and dislocation propagation. Advances in Engineering Software, 2015, 80: 82–92

    Article  Google Scholar 

  37. Budarapu P R, Gracie R, Bordas S P A, Rabczuk T. An adaptive multiscale method for quasi-static crack growth. Computational Mechanics, 2014, 53(6): 1129–1148

    Article  MATH  Google Scholar 

  38. Talebi H, Silani M, Bordas S P A, Kerfriden P, Rabczuk T. Molecular dynamics/XFEM coupling by a three-dimensional extended bridging domain with applications to dynamic brittle fracture. International Journal for Multiscale Computational Engineering, 2013, 11(6): 527–541

    Article  Google Scholar 

  39. Belytschko T, Moës N, Usui S, Parimi C. Arbitrary discontinuities in finite elements. International Journal for Numerical Methods in Engineering, 2001, 50(4): 993–1013

    Article  MATH  Google Scholar 

  40. Sukumar N, Moës N. B Moran, and T Belytschko. Extended finite element method for three-dimensional crack modelling. International Journal for Numerical Methods in Engineering, 2000, 48(11): 1549–1570

    Google Scholar 

  41. Ghasemi H, Park H S, Rabczuk T. A level-set based iga formulation for topology optimization of flexoelectric materials. Computer Methods in Applied Mechanics and Engineering, 2017, 313: 239–258

    Article  MathSciNet  Google Scholar 

  42. Nanthakumar S S, Valizadeh N, Park H S, Rabczuk T. Surface effects on shape and topology optimization of nanostructures. Computational Mechanics, 2015, 56(1): 97–112

    Article  MathSciNet  MATH  Google Scholar 

  43. Chau-Dinh T, Zi G, Lee P S, Rabczuk T, Song J H. Phantom-node method for shell models with arbitrary cracks. Computers & Structures, 2012, 92-93: 242–246

    Article  Google Scholar 

  44. Kumar S, Singh I V, Mishra B K, Rabczuk T. Modeling and simulation of kinked cracks by virtual node xfem. Computer Methods in Applied Mechanics and Engineering, 2015, 283: 1425–1466

    Article  MathSciNet  Google Scholar 

  45. Chen L, Rabczuk T, Bordas S P A, Liu G R, Zeng K Y, Kerfriden P. Extended finite element method with edge-based strain smoothing (ESM-XFEM) for linear elastic crack growth. Computer Methods in Applied Mechanics and Engineering, 2012, 209-212: 250–265

    Article  MathSciNet  MATH  Google Scholar 

  46. Bordas S P A, Natarajan S, Kerfriden P, Augarde C E, Mahapatra D R, Rabczuk T, Pont S D. On the performance of strain smoothing for quadratic and enriched finite element approximations (xfem/gfem/pufem). International Journal for Numerical Methods in Engineering, 2011, 86(4-5): 637–666

    Article  MATH  Google Scholar 

  47. Areias P, Msekh M A, Rabczuk T. Damage and fracture algorithm using the screened poisson equation and local remeshing. Engineering Fracture Mechanics, 2016, 158: 116–143

    Article  Google Scholar 

  48. Rabizadeh E, Saboor Bagherzadeh A, Rabczuk T. Goal-oriented error estimation and adaptive mesh refinement in dynamic coupled thermoelasticity. Computers & Structures, 2016, 173: 187–211

    Article  Google Scholar 

  49. Areias P, Rabczuk T, Msekh M A. Phase-field analysis of finitestrain plates and shells including element subdivision. Computer Methods in Applied Mechanics and Engineering, 2016, 312: 322–350

    Article  MathSciNet  Google Scholar 

  50. Areias P, Rabczuk T, de Sá J C. A novel two-stage discrete crack method based on the screened Poisson equation and local mesh refinement. Computational Mechanics, 2016, 58(6): 1003–1018

    Article  MathSciNet  MATH  Google Scholar 

  51. Areias P, Reinoso J, Camanho P, Rabczuk T. A constitutive-based element-by-element crack propagation algorithm with local mesh refinement. Computational Mechanics, 2015, 56(2): 291–315

    Article  MathSciNet  MATH  Google Scholar 

  52. Areias P, Rabczuk T, Camanho P P. Finite strain fracture of 2d problems with injected anisotropic softening elements. Theoretical and Applied Fracture Mechanics, 2014, 72(1): 50–63

    Article  Google Scholar 

  53. Areias P, Dias-Da-Costa D, Sargado J M, Rabczuk T. Element-wise algorithm for modeling ductile fracture with the rousselier yield function. Computational Mechanics, 2013, 52(6): 1429–1443

    Article  MATH  Google Scholar 

  54. Areias P, Rabczuk T, Dias-da Costa D. Element-wise fracture algorithm based on rotation of edges. Engineering Fracture Mechanics, 2013, 110: 113–137

    Article  MATH  Google Scholar 

  55. Areias P, Rabczuk T. Finite strain fracture of plates and shells with configurational forces and edge rotations. International Journal for Numerical Methods in Engineering, 2013, 94(12): 1099–1122

    Article  MathSciNet  MATH  Google Scholar 

  56. Nguyen-Xuan H, Liu G R, Bordas S, Natarajan S, Rabczuk T. An adaptive singular es-fem for mechanics problems with singular field of arbitrary order. Computer Methods in Applied Mechanics and Engineering, 2013, 253: 252–273

    Article  MathSciNet  MATH  Google Scholar 

  57. Rabczuk T, Belytschko T, Xiao S P. Stable particle methods based on lagrangian kernels. Computer Methods in Applied Mechanics and Engineering, 2004, 193(12-14): 1035–1063

    Article  MathSciNet  MATH  Google Scholar 

  58. Rabczuk T, Areias P. A meshfree thin shell for arbitrary evolving cracks based on an extrinsic basis. Computer Modeling in Engineering & Sciences, 2006, 16(2): 115–130

    Google Scholar 

  59. Zi G, Rabczuk T, Wall W. Extended meshfree methods without branch enrichment for cohesive cracks. Computational Mechanics, 2007, 40(2): 367–382

    Article  MATH  Google Scholar 

  60. Rabczuk T, Zi G. A meshfree method based on the local partition of unity for cohesive cracks. Computational Mechanics, 2007, 39(6): 743–760

    Article  MATH  Google Scholar 

  61. Rabczuk T, Areias P M A, Belytschko T. A meshfree thin shell method for non-linear dynamic fracture. International Journal for Numerical Methods in Engineering, 2007, 72(5): 524–548

    Article  MathSciNet  MATH  Google Scholar 

  62. Amiri F, Millán D, Arroyo M, Silani M, Rabczuk T. Fourth order phase-field model for local max-ENT approximants applied to crack propagation. Computer Methods in Applied Mechanics and Engineering, 2016, 312: 254–275

    Article  MathSciNet  Google Scholar 

  63. Amiri F, Millán D, Shen Y, Rabczuk T, Arroyo M. Phase-field modeling of fracture in linear thin shells. Theoretical and Applied Fracture Mechanics, 2014, 69: 102–109

    Article  Google Scholar 

  64. Amiri F, Anitescu C, Arroyo M, Bordas S P A, Rabczuk T. Xlme interpolants, a seamless bridge between xfem and enriched meshless methods. Computational Mechanics, 2014, 53(1): 45–57

    Article  MathSciNet  MATH  Google Scholar 

  65. Talebi H, Samaniego C, Samaniego E, Rabczuk T. On the numerical stability and mass-lumping schemes for explicit enriched meshfree methods. International Journal for Numerical Methods in Engineering, 2012, 89(8): 1009–1027

    Article  MathSciNet  MATH  Google Scholar 

  66. Rabczuk T, Gracie R, Song J H, Belytschko T. Immersed particle method for fluid-structure interaction. International Journal for Numerical Methods in Engineering, 2010, 81(1): 48–71

    MathSciNet  MATH  Google Scholar 

  67. Nguyen V P, Rabczuk T, Bordas S, Duflot M. Meshless methods: A review and computer implementation aspects. Mathematics and Computers in Simulation, 2008, 79(3): 763–813

    Article  MathSciNet  MATH  Google Scholar 

  68. Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H. A geometrically nonlinear three-dimensional cohesive crack method for reinforced concrete structures. Engineering Fracture Mechanics, 2008, 75(16): 4740–4758

    Article  Google Scholar 

  69. Ren H, Zhuang X, Cai Y, Rabczuk T. Dual-horizon peridynamics. International Journal for Numerical Methods in Engineering, 2016, 108(12): 1451–1476

    Article  MathSciNet  Google Scholar 

  70. Rabczuk T, Belytschko T. Cracking particles: A simplified meshfree method for arbitrary evolving cracks. International Journal for Numerical Methods in Engineering, 2004, 61(13): 2316–2343

    Article  MATH  Google Scholar 

  71. Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H. A simple and robust three-dimensional cracking-particle method without enrichment. Computer Methods in Applied Mechanics and Engineering, 2010, 199(37-40): 2437–2455

    Article  MATH  Google Scholar 

  72. Rabczuk T, Belytschko T. A three-dimensional large deformation meshfree method for arbitrary evolving cracks. Computer Methods in Applied Mechanics and Engineering, 2007, 196(29-30): 2777–2799

    Article  MathSciNet  MATH  Google Scholar 

  73. Nguyen-Thanh N, Valizadeh N, Nguyen M N, Nguyen-Xuan H, Zhuang X, Areias P, Zi G, Bazilevs Y, De Lorenzis L, Rabczuk T. An extended isogeometric thin shell analysis based on kirchhofflove theory. Computer Methods in Applied Mechanics and Engineering, 2015, 284: 265–291

    Article  MathSciNet  Google Scholar 

  74. Ghorashi S S, Valizadeh N, Mohammadi S, Rabczuk T. T-spline based xiga for fracture analysis of orthotropic media. Computers & Structures, 2015, 147: 138–146

    Article  Google Scholar 

  75. Thai T Q, Rabczuk T, Bazilevs Y, Meschke G. A higher-order stress-based gradient-enhanced damage model based on isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 2016, 304: 584–604

    Article  MathSciNet  Google Scholar 

  76. Chan C L, Anitescu C, Rabczuk T. Volumetric parametrization from a level set boundary representation with pht-splines. CAD Computer Aided Design, 2017, 82: 29–41

    Article  MathSciNet  Google Scholar 

  77. Nguyen V P, Anitescu C, Bordas S P A, Rabczuk T. Isogeometric analysis: An overview and computer implementation aspects. Mathematics and Computers in Simulation, 2015, 117: 89–116

    Article  MathSciNet  Google Scholar 

  78. Thai C H, Ferreira A J M, Bordas S P A, Rabczuk T, Nguyen-Xuan H. Isogeometric analysis of laminated composite and sandwich plates using a new inverse trigonometric shear deformation theory. European Journal of Mechanics. A, Solids, 2014, 43: 89–108

    Article  Google Scholar 

  79. Thai C H, Nguyen-Xuan H, Nguyen-Thanh N, Le T H, Nguyen-Thoi T, Rabczuk T. Static, free vibration, and buckling analysis of laminated composite reissner-mindlin plates using nurbs-based isogeometric approach. International Journal for Numerical Methods in Engineering, 2012, 91(6): 571–603

    Article  MathSciNet  MATH  Google Scholar 

  80. Nguyen-Thanh N, Kiendl J, Nguyen-Xuan H, Wchner R, Bletzinger K U, Bazilevs Y, Rabczuk T. Rotation free isogeometric thin shell analysis using pht-splines. Computer Methods in Applied Mechanics and Engineering, 2011, 200(47-4): 3410–3424

    Article  MathSciNet  MATH  Google Scholar 

  81. Nguyen-Thanh N, Nguyen-Xuan H, Bordas S P A, Rabczuk T. Isogeometric analysis using polynomial splines over hierarchical tmeshes for two-dimensional elastic solids. Computer Methods in Applied Mechanics and Engineering, 2011, 200(21-4): 1892–1908

    Article  MathSciNet  MATH  Google Scholar 

  82. Zhuang X, Huang R, Liang C, Rabczuk T. A coupled thermohydromechanical model of jointed hard rock for compressed air energy storage. Mathematical Problems in Engineering, 2014, 2014

    Google Scholar 

  83. Areias P, Rabczuk T, Camanho P P. Initially rigid cohesive laws and fracture based on edge rotations. Computational Mechanics, 2013, 52(4): 931–947

    Article  MATH  Google Scholar 

  84. Frédéric Feyel, Jean-Louis Chaboche. Fe 2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre sic/ti composite materials. Computer Methods in Applied Mechanics and Engineering, 2000, 183(3): 309–330

    MATH  Google Scholar 

  85. Zeng X, Xu X, Prathamesh M. Shenai, Eugene Kovalev, Charles Baudot, Nripan Mathews, and Yang Zhao. Characteristics of the electrical percolation in carbon nanotubes/polymer nanocomposites. Journal of Physical Chemistry C, 2011, 115(44): 21685–21690

    Article  Google Scholar 

  86. Belytschko T, Yun Y L, Gu L. Element-free galerkin methods. International Journal for Numerical Methods in Engineering, 1994, 37(2): 229–256

    Article  MathSciNet  MATH  Google Scholar 

  87. Belytschko T, Lu Y Y, Gu L, Tabbara M. Element-free galerkin methods for static and dynamic fracture. International Journal of Solids and Structures, 1995, 32(17): 2547–2570

    Article  MATH  Google Scholar 

  88. Zhuang X, Augarde C E, Mathisen K M. Fracture modeling using meshless methods and level sets in 3d: framework and modeling. International Journal for Numerical Methods in Engineering, 2012, 92(11): 969–998

    Article  MathSciNet  MATH  Google Scholar 

  89. Zhuang X, Zhu H, Augarde C. An improved mesh-less shepard and least squares method possessing the delta property and requiring no singular weight function. Computational Mechanics, 2014, 53(2): 343–357

    Article  MathSciNet  MATH  Google Scholar 

  90. Rabczuk T, Bordas S, Zi G. A three-dimensional meshfree method for continuous multiple-crack initiation, propagation and junction in statics and dynamics. Computational Mechanics, 2007, 40(3): 473–495

    Article  MATH  Google Scholar 

  91. Bordas S, Rabczuk T, Zi G. Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment. Engineering Fracture Mechanics, 2008, 75(5): 943–960

    Article  Google Scholar 

  92. Rabczuk T, Bordas S, Zi G. On three-dimensional modelling of crack growth using partition of unity methods. Computers & Structures, 2010, 88(23): 1391–1411

    Article  Google Scholar 

  93. Song J H, Areias P, Belytschko T. A method for dynamic crack and shear band propagation with phantom nodes. International Journal for Numerical Methods in Engineering, 2006, 67(6): 868–893

    Article  MATH  Google Scholar 

  94. Enderlein M, Ricoeur A, Kuna M. Finite element techniques for dynamic crack analysis in piezoelectrics. International Journal of Fracture, 2005, 134(3-4): 191–208

    Article  MATH  Google Scholar 

  95. Kuna M. Finite element analyses of crack problems in piezoelectric structures. Computational Materials Science, 1998, 13(1): 67–80

    Article  Google Scholar 

  96. Shang F, Kuna M, Abendroth M. Meinhard Kuna, and Martin Abendroth. Finite element analyses of three-dimensional crack problems in piezoelectric structures. Engineering Fracture Mechanics, 2003, 70(2): 143–160

    Google Scholar 

  97. Béchet E, Scherzer M, Kuna M. Application of the x-fem to the fracture of piezoelectric materials. International Journal for Numerical Methods in Engineering, 2009, 77(11): 1535–1565

    Article  MathSciNet  MATH  Google Scholar 

  98. Nanthakumar S S, Lahmer T, Zhuang X, Zi G, Rabczuk T. Detection of material interfaces using a regularized level set method in piezoelectric structures. Inverse Problems in Science and Engineering, 2016, 1: 153–176

    Article  MathSciNet  Google Scholar 

  99. Gupta S S, Bosco F G, Batra R C. Wall thickness and elastic moduli of single-walled carbon nanotubes from frequencies of axial, torsional and inextensional modes of vibration. Computational Materials Science, 2010, 47(4): 1049–1059

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support from the Sofja Kovalevskaja Programme from AvH, the Ministry of Science and Technology of China (SLDRCE14B-31), Shanghai Qimingxing Program (16QA1404000) and Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoying Zhuang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., He, P. & Zhuang, X. Fracture model for the prediction of the electrical percolation threshold in CNTs/Polymer composites. Front. Struct. Civ. Eng. 12, 125–136 (2018). https://doi.org/10.1007/s11709-017-0396-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11709-017-0396-8

Keywords

Navigation