Skip to main content
Log in

Revisiting solar hydrogen production through photovoltaic-electrocatalytic and photoelectrochemical water splitting

  • Mini Review
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

Photoelectrochemical (PEC) water splitting is regarded as a promising way for solar hydrogen production, while the fast development of photovoltaic-electrolysis (PV-EC) has pushed PEC research into an embarrassed situation. In this paper, a comparison of PEC and PV-EC in terms of efficiency, cost, and stability is conducted and briefly discussed. It is suggested that the PEC should target on high solar-to-hydrogen efficiency based on cheap semiconductors in order to maintain its role in the technological race of sustainable hydrogen production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brattain W H, Garrett C G B. Experiments on the interface between germanium and an electrolyte. Bell System Technical Journal, 1955, 34(1): 129–176

    Article  Google Scholar 

  2. Letaw H Jr, Bardeen J. Electrolytic analog transistor. Journal of Applied Physics, 1954, 25(5): 600–606

    Article  Google Scholar 

  3. Peter L M. Semiconductor electrochemistry. In: Giménez S, Bisquert J, eds. Photoelectrochemical Solar Fuel Production. Cham: Springer International Publishing, 2016: 3–40

    Chapter  Google Scholar 

  4. Williams F, Nozik A J. Solid-state perspectives of the photoelectrochemistry of semiconductor-electrolyte junctions. Nature, 1984, 312(5989): 21–27

    Article  Google Scholar 

  5. Ellis A B, Kaiser S W, Bolts J M, et al. Study of n-type semiconducting cadmium chalcogenide-based photoelectrochemical cells employing polychalcogenide electrolytes. Journal of the American Chemical Society, 1977, 99(9): 2839–2848

    Article  Google Scholar 

  6. de Tacconi N R, Myung N, Rajeshwar K. Overlayer formation in the n-CdSe/[Fe(CN)6]4−/3− photoelectrochemical system as probed by laser Raman spectroscopy and electrochemical quartz crystal microgravimetry. Journal of Physical Chemistry, 1995, 99(16): 6103–6

    Article  Google Scholar 

  7. Memming R. Solar energy conversion by photoelectrochemical processes. Electrochimica Acta, 1980, 25(1): 77–88

    Article  Google Scholar 

  8. Nozik A J. Photoelectrochemistry: applications to solar energy conversion. Annual Review of Physical Chemistry, 1978, 29(1): 189–222

    Article  Google Scholar 

  9. Gerischer H, Tobias C W. Advances in Electrochemistry and Electrochemical Engineering. New York: John Wiley and Sons, 1978

    Google Scholar 

  10. Bard A J. Photoelectrochemistry. Science, 1980, 207(4427): 139–144

    Article  Google Scholar 

  11. Morrison S R. Applications of semiconductor electrodes. In: Electrochemistry at Semiconductor and Oxidized Metal Electrodes. Boston, MA: Springer US, 1980: 335–357

    Chapter  Google Scholar 

  12. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37–38

    Article  Google Scholar 

  13. NRER. National Best research—cell efficiency chart. 2020-04-06, available at website of http://nrel.gov

  14. Lagadec M F, Grimaud A. Water electrolysers with closed and open electrochemical systems. Nature Materials, 2020, 19(11): 1140–1150

    Article  Google Scholar 

  15. Ayers K, Danilovic N, Ouimet R, et al. Perspectives on low-temperature electrolysis and potential for renewable hydrogen at scale. Annual Review of Chemical and Biomolecular Engineering, 2019, 10(1): 219–239

    Article  Google Scholar 

  16. Luo J, Im J H, Mayer M T, et al. Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts. Science, 2014, 345(6204): 1593–1596

    Article  Google Scholar 

  17. Khaselev O, Turner J A. A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science, 1998, 280(5362): 425–427

    Article  Google Scholar 

  18. Jia J, Seitz L C, Benck J D, et al. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%. Nature Communications, 2016, 7(1): 13237

    Article  Google Scholar 

  19. Pan L, Kim J H, Mayer M T, et al. Boosting the performance of Cu2O photocathodes for unassisted solar water splitting devices. Nature Catalysis, 2018, 1(6): 412–420

    Article  Google Scholar 

  20. Zhai P, Haussener S, Ager J, et al. Net primary energy balance of a solar-driven photoelectrochemical water-splitting device. Energy & Environmental Science, 2013, 6(8): 2380

    Article  Google Scholar 

  21. Sivula K, van de Krol R. Semiconducting materials for photoelectrochemical energy conversion. Nature Reviews. Materials, 2016, 1(2): 15010

    Article  Google Scholar 

  22. Zhang S, He Y. Analysis on the development and policy of solar PV power in China. Renewable & Sustainable Energy Reviews, 2013, 21: 393–401

    Article  Google Scholar 

  23. Alajlani Y, Alaswad A, Placido F, et al. Inorganic thin film materials for solar cell applications. In: Reference Module in Materials Science and Materials Engineering. Amsterdam: Elsevier B. V., 2018

    Google Scholar 

  24. Feldman D, Barbose G, Margolis R, et al. Photovoltaic (PV) pricing trends: historical, recent, and near-term projections. Office of Scientific and Technical Information (OSTI), 2012

  25. Detz R J, Reek J N H, van der Zwaan B C C. The future of solar fuels: when could they become competitive? Energy & Environmental Science, 2018, 11(7): 1653–1669

    Article  Google Scholar 

  26. Grimm A, de Jong W A, Kramer G J. Renewable hydrogen production: a techno-economic comparison of photoelectrochemical cells and photovoltaic-electrolysis. International Journal of Hydrogen Energy, 2020, 45(43): 22545–22555

    Article  Google Scholar 

  27. Wang Z, Wang L. Photoelectrode for water splitting: materials, fabrication and characterization. Science China Materials, 2018, 61(6): 806–821

    Article  Google Scholar 

  28. Kabir E, Kumar P, Kumar S, et al. Solar energy: potential and future prospects. Renewable & Sustainable Energy Reviews, 2018, 82: 894–900

    Article  Google Scholar 

  29. Kuang Y, Jia Q, Ma G, et al. Ultrastable low-bias water splitting photoanodes via photocorrosion inhibition and in situ catalyst regeneration. Nature Energy, 2017, 2(1): 16191

    Article  Google Scholar 

  30. Bhandari K P, Collier J M, Ellingson R J, et al. Energy payback time (EPBT) and energy return on energy invested (EROI) of solar photovoltaic systems: a systematic review and meta-analysis. Renewable & Sustainable Energy Reviews, 2015, 47: 133–141

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Australian Research Council through its Discovery Programs, DECRA and Laureate Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiliang Wang or Lianzhou Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Gu, Y. & Wang, L. Revisiting solar hydrogen production through photovoltaic-electrocatalytic and photoelectrochemical water splitting. Front. Energy 15, 596–599 (2021). https://doi.org/10.1007/s11708-021-0745-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-021-0745-0

Keywords

Navigation