Skip to main content
Log in

Effectiveness of basin morphometry, remote sensing, and applied geosciences on groundwater recharge potential mapping: a comparative study within a small watershed

  • Research Article
  • Published:
Frontiers of Earth Science Aims and scope Submit manuscript

Abstract

A multidisciplinary approach using the integrated field of geosciences (e.g., geomorphology, geotectonics, geophysics, and hydrology) is established to conduct groundwater recharge potential mapping of the Kunur River Basin, India. The relative mean error (RME) calculation of the results of three applied techniques and water table data from twenty-four observation wells in the basin over the 2000–2010 period are presented. Nine subbasins were identified and ranked for the RME calculation, where the observation wells-based ranking was taken as standard order for comparison. A linear model has been developed using six factors (drainage density, surface slope, ruggedness index, lineament density, Bouguer gravity anomaly, and potential maximum water retention capacity) and a grid-wise weighted index. In a separate comparative approach, the sub-basin and grid-wise analyses have been conducted to identify the suitable spatial unit for watershed level hydrological modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad I, Verma V, Verma M K (2015). Application of Curve Number Method for Estimation of Runoff Potential in GIS Environment. 2nd International Conference on Geological and Civil Engineering, IPCBEE, 80, 16–20

    Google Scholar 

  • Ajmal M, Moon G, Ahn J, Kim T (2015). Investigation of SCS-CN and its inspired modified models for runoff estimation in South Korean watersheds. J Hydro-environment Res, 9(4): 592–603

    Article  Google Scholar 

  • Anbazhagan S, Ramasamy S M, Das Gupta S (2005). Remote sensing and GIS for artificial recharge study, runoff estimation and planning in Ayyar basin, Tamil Nadu, India. Environ Geol, 48(2): 158–170

    Article  Google Scholar 

  • Avinash K, Deepika B, Jayappa K S (2014). Basin geomorphology and drainage morphometry parameters used as indicators for groundwater prospect: insight from geographical information system (GIS) technique. Journal of Earth Science, 25(6): 1018–1032

    Article  Google Scholar 

  • Avinash K, Jayappa K S, Deepika B (2011). Prioritization of sub-basins based on geomorphology and morphometric analysis using remote sensing and geographic information system (GIS) techniques. Geocarto Int, 26(7): 569–592

    Article  Google Scholar 

  • Banerjee T, Das A L, Mukhopadhyay S C (2011). Prioritisation of Silai sub watersheds for erosion management using drainage morphometry and soil erosion rates. Geogr Rev India, 73(4): 323–338

    Google Scholar 

  • Biswas S, Sudhakar S, Desai V R (1999). Prioritization of subwatersheds based on morphometric analysis of drainage basin: a remote sensing and GIS approach. Journal of the Indian Society of Remote Sensing, 27(3): 155–166

    Article  Google Scholar 

  • CGWB (Central GroundWater Board) (2010). Groundwater Scenario of India 2009–10. Ministry of Water Resources, Govt. of India

    Google Scholar 

  • CGWB (Central Ground Water Board) (2014). Aquifer Systems of West Bengal. Ministry ofWater Resources, Govt. of India, Eastern Region, Kolkata

    Google Scholar 

  • Chaudhary B S, Kumar M, Roy A K, Ruhal D S (1996). Application of Remote sensing and Geographic Information Systems in Groundwater investigations in Sohna block, Gurgaon District, Haryana (India). In: International Archives of Photogrametry and Remote sensing Vienna, vol. XXXI, Part B6, 18–23

    Google Scholar 

  • Chow V T (1964). Handbook of Applied Hydrology. New York: McGraw-Hill

    Google Scholar 

  • de Alwis D A, Easton Z M, Dahlke H E, Philpot W D, Steenhuis T S (2007). Unsupervised classification of saturated areas using a time series of remotely sensed images. Hydrol Earth Syst Sci, 11(5): 1609–1620

    Article  Google Scholar 

  • Dobrin M B (1976). Introduction to Geophysical Prospecting. New York: McGraw-Hill Bock Company

    Google Scholar 

  • Drury S A (1993). Image Interpretation in Geology. UK: Chapman & Hall

    Google Scholar 

  • Elbeih S F (2015). An overview of integrated remote sensing and GIS for groundwater mapping in Egypt. Ain Shams Engineering Journal, 6 (1): 1–15

    Article  Google Scholar 

  • Elmahdy S I, Mohamed M M (2015). Automatic detection of near surface geological and hydrological features and investigating their influence on groundwater accumulation and salinity in southwest Egypt using remote sensing and GIS. Geocarto Int, 30(2): 132–144

    Google Scholar 

  • Esper Angillieri M Y (2008). Morphometric analysis of Colanguil river basin and flash flood hazard, San Juan, Argentina. Environmental Geology, 55(1): 107–111

    Article  Google Scholar 

  • Falkenmark M (1994). Successfully coping with complex water scarcity: an issue of land/water integration. In: Gieske A, Gould J, eds. Proceedings of the Workshop on Integrated Water Resources Management, University of Botswana and Rural Industries Research Centre, Kanye-Gaborone, 11–26

    Google Scholar 

  • Godebo T R (2005). Application of Remote Sensing and GIS for Geological Investigation and Groundwater Potential Zone Identification, Southeastern Ethiopian Plateau, Bale Mountains and the Surrounding Areas. Thesis of M. Sc. Dissertation, Department of Earth Sciences, Addis Ababa University, 43

    Google Scholar 

  • Gopinath G, Seralathan P (2004). Identification of Groundwater Prospective Zones Using IRS-ID LISS III and Pump Test Methods. Journal of Indian Society of Remote Sensing, 32(4): 329–342

    Article  Google Scholar 

  • Gravelius H (1914). Grundrifi der gesamten Gewcisserkunde. Band I: Flufikunde (Compendium of Hydrology, vol. I. Rivers, in German). Germany: Goschen, Berlin

    Google Scholar 

  • Gundalia M, Dholakia M (2014). Impact of Monthly Curve Number on Daily Runoff Estimation for Ozat Catchment in India. Open Journal of Modern Hydrology, 4(04): 144–155

    Article  Google Scholar 

  • Guo K, Wang J, Wang Y (2015). Application of ZY-3 remote sensing image in the research of Huashan experimental watershed. Proceedings of the International Association of Hydrological Sciences, 368: 51–56

    Article  Google Scholar 

  • Hadley R F, Schumm S A (1961). Sediment sources and drainage basin characteristics in upper Cheyenne River basin. Washington, DC: US Geological Survey, Water-Supply Paper. 1531–B, 198

    Google Scholar 

  • Hajam R A, Hamid A, Bhat S (2013). Application of morphometric analysis for geo-hydrological studies using geo-spatial technology-A case study of Vishav Drainage Basin. Hydrol Current Res, 4: 157

    Google Scholar 

  • Haridas V R, Aravmdan S, Gopinath G (1998). Remote sensing and its applications for groundwater favourable area identification. Qut J GARC, 6(1): 18–22

    Google Scholar 

  • Haridas V R, Chandra Sekaran V A, Kumaraswamy K, Rajendran S, Unnikrishnan K (1994). Geomorphological and lineament studies of Kanjamalai using IRS-IA data with special reference to groundwater potentiality. Trans Inst Indian Geogr, 16(1): 35–41

    Google Scholar 

  • Hidore J J (1964). Landform characteristics affecting watershed yields on the Mississippi–Missouri interfluve. In: Moore G A, ed. Proceedings of the Oklahoma Academy of Science. Edmond, Oklahoma: University of Central Oklahoma, 201–203

    Google Scholar 

  • Horton R E (1932). Drainage basin characteristics. Trans Am Geophys Union, 13(1): 350–361

    Article  Google Scholar 

  • Horton R E (1945). Erosional development of streams and their drainage basins: hydro physical approach to quantitative morphology. Geol Soc Am Bull, 56(3): 275–370

    Article  Google Scholar 

  • Indian Meteorological Department (2014). IMD District wise normals, Barddhaman. Govt. of India

    Google Scholar 

  • Javed A, Khanday Y M, Ahmed R (2009). Prioritization of subwatersheds based on morphometric and land use analysis using remote sensing and GIS techniques. Journal of Indian Society of Remote Sensing, 37(2): 261–274

    Article  Google Scholar 

  • Jiang D, Wang J, Huang Y, Zhou K, Ding X, Fu J (2014). The Review of GRACE Data Applications in Terrestrial Hydrology Monitoring. Advances in Meteorology, Volume 2014, Article ID 725131, 9 pages, http://dx.doi.org/10.1155/2014/725131

    Google Scholar 

  • Kale V S, Gupta A (2001). Introduction to geomorphology. Hyderabad, India: Orient Longman Ltd

    Google Scholar 

  • Khan M A, Gupta V P, Moharana P C (2001). Watershed prioritization using remote sensing and geographical information system: a case study from Guhiya. India. J Arid Environ, 49(3): 465–475

    Article  Google Scholar 

  • Khan Z A, Tewari R C (2011). Palaeochannel and palaeohydrology of a Middle Siwalik (Pliocene) fluvial system, northern India. J Earth Syst Sci, 120(3): 531–543

    Article  Google Scholar 

  • Kirpich Z P (1940). Time of concentration of small agricultural watersheds. Civ Eng (NYNY), 6: 362

    Google Scholar 

  • Kolker A S, Cable J E, Johannesson K H, Allison M A, Inniss L V (2013). Pathways and processes associated with the transport of groundwater in deltaic systems. J Hydrol (Amst), 498: 319–334

    Article  Google Scholar 

  • Koopmans B N (1983). Side looking Radar, a tool for geological surveys. Remote Sens Rev, 1(1): 19–69

    Article  Google Scholar 

  • Krishnamurthy J, Venkatesa Kumar N, Jayaraman V, Manivel M (1996). An approach to demarcate groundwater potential zones through remote sensing and a geographical information system. Int J Remote Sens, 17(10): 1867–1884

    Article  Google Scholar 

  • Kumar R, Raj H (2013). Mitigation of groundwater depletion hazards in India. Curr Sci, 104(10): 1271

    Google Scholar 

  • Long D, Scanlon B R, Longuevergne L, Sun A Y, Fernando D N, Save H (2013). GRACE satellite monitoring of large depletion in water storage in response to the 2011 drought in Texas. Geophys Res Lett, 40(13): 3395–3401

    Article  Google Scholar 

  • Long D, Shen Y, Sun A, Hong Y, Longuevergne L, Yang Y, Li B, Chen L (2014). Drought and flood monitoring for a large karst plateau in Southwest China using extended GRACE data. Remote Sens Environ, 155: 145–160

    Article  Google Scholar 

  • Long L T, Kaufmann R D (2013). Acquisition and Analysis of Terrestrial Gravity Data. Delhi: Cambridge University Press

    Book  Google Scholar 

  • Longuevergne L, Scanlon B R, Wilson C R (2010). GRACE Hydrological estimates for small basins: evaluating processing approaches on the High Plains Aquifer, USA. Water Resour Res, 46(11): W11517

    Article  Google Scholar 

  • Magesh N S, Jitheshal K V, Chandrasekar N, Jini K V (2013). Geographical information system based morphometric analysis of Bharathapuzha River Basin, Kerla, India. Appl Water Sci, 3(2): 467–477

    Article  Google Scholar 

  • Mallinson D J, Smith C W, Culver S J, Riggs S R, Ames D (2010). Geological characteristics and spatial distribution of paleo-inlet channels beneath the outer banks barrier islands, North Carolina, USA. Estuar Coast Shelf Sci, 88(2): 175–189

    Article  Google Scholar 

  • Manu M S, Anirudhan S (2008). Drainage characteristics of Achankovil river basin, Kerala. J Geol Soc India, 71: 841–850

    Google Scholar 

  • Martin A K, Gadiga B L (2015). Hydrological and Morphometric Analysis of Upper Yedzaram Catchmnet of Mubi in Adamawa State, Nigeria Using Geographical Information System (GIS). World Environment, 5(2): 63–69

    Google Scholar 

  • McCauley J, Schaber F, Breed C S, Grolier M J, Haynes C V, Issawa B, Elachi C, Blom R (1982). Subsurface valleys and geo-archeology of the eastern Sahara revealed by Shuttle radar. Science, 218(4576): 1004–1020

    Article  Google Scholar 

  • Meijerink A M G (1996). Remote sensing applications to hydrology: groundwater. Hydrol Sci J, 41(4): 549–561

    Article  Google Scholar 

  • Menenti M, LI X, Wang J, Vereecken H, LI J, Mnacini M, Liu Q, Jia L, Kuenzer C, Huang S, Yesou H, Wen J, Ker Y, Cheng X, Gourmelen N, KE C, Ludwing R, LIN H, Eineder M, MA Y, Su ZB (2015). Hydrologic and Cryospheric Processes Observed From Space. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL (7/W3): 1101–1110

    Article  Google Scholar 

  • Miller V C (1953). A quantitative geomorphic study of drainage basin characteristics in the Clinch mountain area. New York: Department of Geology, ONR, Columbia University, Virginia and Tennessee, Project NR389–402, Technical Report 3

    Google Scholar 

  • Minor Irrigation Census (2001). Report on Census of Minor Irrigation Schemes (1993–94). Minor Irrigation Division, Ministry of Water Resources, Govt. of India, New Delhi

    Google Scholar 

  • National Climate Centre (2006). Trends in the rainfall pattern over the India. India Meteorological Department, Pune, India

    Google Scholar 

  • NGRI (1978). NGRI/GPH-1 to 5: Gravity Maps of India scale 1: 5,000,000. National Geophysical Research Institute, Hyderabad, India

    Google Scholar 

  • NIH (National Institute of Hydrology) (1996–1997). Infiltration Studies in Sher-Umar River Doab in Narmada basin. Report No. CS (AR) 6/96-97, Jal Vighyan Bhawan, Roorkee, India

    Google Scholar 

  • Niyogi M (1985). Groundwater resource of the Ajay Basin. In: Chatterjee S P, ed. Geographical Mosaic-Professor K.G. Bagechi Felicitation, Manasi Press, Calcutta, India, 165–182

    Google Scholar 

  • Nooka Ratnam K, Srivastava Y K, Venkateswara Rao V, Amminedu E, Murthy K S R (2005). Check dam positioning by prioritization of micro watersheds using SYI model and morphometric analysis–remote sensing and GIS perspective. Journal of the Indian Society of Remote Sensing, 33(1): 25–38

    Article  Google Scholar 

  • NRSC (2014). National geomorphological and lineament mapping on 1:50,000 scale using Resourcesat-1 LISS-III data. Manual for Geomorphology and Lineament Mapping (Web Version), National Remote Sensing Centre, Hyderabad, India

    Google Scholar 

  • Obi Reddy G P, Maji A K, Gajbhiye K S (2004). Drainage morphometry and its influence on landform characteristics in a basaltic terrain, central India: a remote sensing and GIS approach. Int J Appl Earth Obs Geoinf, 6(1): 1–16

    Article  Google Scholar 

  • Pakhmode V, Kulkarni H, Deolankar S B (2003). Hydrological-drainage analysis in watershed-programme planning: a case from the Deccan basalt, India. Hydrogeol J, 11(5): 595–604

    Article  Google Scholar 

  • Philip G M, Watson D F (1982). A precise method for determining contoured surfaces. Aust Petrol Explor Assoc J, 22(1): 205–212

    Google Scholar 

  • Prakash S R, Mishra D (1993). Identification of groundwater prospecting zones by using remote sensing and geoelectrical methods in and around Saidnager area, Dakar Block, Jalaun district, uttar pradesh. Indian Society of Remote Sensing, 21(4): 217–227

    Article  Google Scholar 

  • Prasad A S S S R S, Venkateswarlu N, Reddy P R (2005). Crustal density model along Gopali-Port Canning profile, West Bengal basin using seismic and gravity data. J Ind Geophys Union, 9(4): 235–239

    Google Scholar 

  • Raghunath H M (2013). Hydrology: Principal, Analysis, Design (2nd Revised Ed.). New Delhi: New Age International Publishers

    Google Scholar 

  • Rajwant U, Sharma U K (2015). Morphometric analysis of third order river basins to assess the vulnerability of Baner Khad Watershed towards erosional process, Himachal Pradesh, India. Himalayan Geology, 36 (1): 65–73

    Google Scholar 

  • Ramalingam M, Santhakumar A R (2001). Case study on artificial recharge using remote sensing and GIS. www.GISdevelopment.net, accessed on January 2, 2014

    Google Scholar 

  • Ramamoorthi A (1983). Snow-melt run-off studies using remote sensing data. Sadhana, 6: 279–286

    Google Scholar 

  • Rango A, Ritchie J C (1996). Remote sensing application to hydrology. Hydrol Sci J, 41(4): 477–494

    Article  Google Scholar 

  • Ravindran K V, Jeyram A (1997). Groundwater prospects of Shahbad tehsil, Baran district and eastern Rajasthan: a remote sensing approach. Indian society of remote sensing, 25 (4): 239–246

    Article  Google Scholar 

  • Reddy J R (2005). A Textbook of Hydrology. New Delhi: University Science Press

    Google Scholar 

  • Ringrose S, Vanderpost C, Matheson W (1998). Evaluation of vegetative criteria for near-surface groundwater detection using multispectral mapping and GIS techniques in semi-arid Botswana. Appl Geogr, 18 (4): 331–354

    Article  Google Scholar 

  • Roy A K, Ray P K C (1993). Groundwater investigation using remote sensing and geographic information techniques-A case study in Manabazar-II, Purulia (W.B.). Proceeding national symposium of north-eastern region, Guwahati, India, 180–184

    Google Scholar 

  • Roy S, Mistri B (2013). Estimation of peak flood discharge for an ungauged river: a case study of the Kunur River, West Bengal. Geogr J, 2013(214140): 1–11

    Article  Google Scholar 

  • Roy S, Sahu A S (2015). Quaternary tectonic control on channel morphology over sedimentary low land: a case study in the Ajay-Damodar interfluve of Eastern India. Geoscience Frontiers, 6(6): 927–946

    Article  Google Scholar 

  • Sahu S, Saha D (2014). Geomorphologic, stratigraphic and sedimentologic evidences of tectonic activity in Sone–Ganga alluvial tract in Middle Ganga Plain, India. J Earth Syst Sci, 123:1335–1347

    Article  Google Scholar 

  • Samadder R K, Kumar S, Gupta R P (2011). Palaeochannels and their potential for artificial groundwater recharge in the western Ganga plains. J Hydrol (Amst), 400(1–2): 154–164

    Article  Google Scholar 

  • Sankar K (2002). Evaluation of groundwater potential zones using remote sensing data in Upper Vaigai river basin, Tamil Nadu. India J Indian Soc Rem Sens, 30(3): 119–129

    Article  Google Scholar 

  • Saraf A K, Choudhury P R (1998). Integrated remote sensing and GIS for groundwater exploration and identification of artificial recharge sites. Int J Remote Sens, 19(10): 1825–1841

    Article  Google Scholar 

  • Saravanan S, Manjula R (2015). Geomorphology based semi-distributed approach for modeling rainfall-runoff modeling using GIS. Aquatic Procedia, 4: 908–916

    Article  Google Scholar 

  • Schultz G A (1997). Use of remote sensing data in a GIS environment for water resources management, Remote Sensing and Geographic Information Systems for Design and Operation of Water Resources Systems. In: Proceedings of Rabat Symposium S3, April 1997. IAHS Publ no. 242, 3–15

    Google Scholar 

  • Schumm S A (1956). Evolution of drainage system and slope in badlands at Perth Amboy, New Jersey. Geol Soc Am Bull, 67(5): 597–646

    Article  Google Scholar 

  • Shah T (2009). Taming the Anarchy: Groundwater Governance in South Asia. Resources for the Future, Washington DC and International Water Management Institute, Colombo

    Google Scholar 

  • Shah T (2011). Innovations in Groundwater Management: Examples from India. International Water Management Institute. http://rosenberg. ucanr.org/documents/argentina/Tushar ShahFinal.pdf

    Google Scholar 

  • Shankar V P S, Kulkarni H, Krishnan S (2011). India’s groundwater challenge and the way forward. Econ Polit Wkly, XLVI(2): 37–45

    Google Scholar 

  • Shi J, Wang J, Hsu A Y, O’Neill P E, Engman E T (1997). Estimation of bare surface soil moisture and surface roughness parameter using Lband SAR image data. IEEE Trans Geosci Rem Sens, 35(5): 1254–1266

    Article  Google Scholar 

  • Shi Z H, Chen L D, Fang N F, Qin D F, Cai C F (2009). Research on the SCS CN initial abstraction ratio using rainfall-runoff event analysis in the Three Gorges Area, China. Catena, 77(1): 1–7

    Article  Google Scholar 

  • Smith A B, Walker J P, Western A W (2004). Assimilation of gravity data into a soil moisture and groundwater column model. In: Teuling A J, Leijnse H, Troch P A, Sheffield J, Wood E F, eds. Proceedings of the 2nd international CAHMDA workshop on: The Terrestrial Water Cycle: Modelling and Data Assimilation Across Catchment Scales, Princeton, NJ, 135–137

    Google Scholar 

  • Smith K G (1950). Standards for grading texture of erosional topography. American Journal of Science, 248: 655–668

    Article  Google Scholar 

  • Soil Conservation Service (1964). National engineering handbook. Section 4, Hydrology, Department of Agriculture, Washington, 450

    Google Scholar 

  • Soil Conservation Service (1972). National engineering handbook. Section 4, Hydrology, Department of Agriculture, Washington, 762

    Google Scholar 

  • Sreedevi P D, Subrahmanyam K, Ahmed S (2005). The significance of morphometric analysis for obtaining groundwater potential zones in a structurally controlled terrain. Environmental Geology, 47(3): 412–420

    Article  Google Scholar 

  • Sridhar A (2007). Discharge estimation from planform characters of the Shedhi River, Gujarat alluvial plain: present and past. J Earth Syst Sci, 116(4): 341–346

    Article  Google Scholar 

  • Sridhar A, Chamyal L S, Bhattacharjee F, Singhvi A K (2013). Early Holocene fluvial activity from the sedimentology and palaeohydrology of gravel terrace in the semi arid Mahi River Basin, India. J Asian Earth Sci, 66: 240–248

    Article  Google Scholar 

  • Srinivasa V S, Govindaiah S, Honne Gowda H (2008). Prioritization of sub-watersheds for sustainable development and management of natural resources: an integrated approach using remote sensing, GIS and socio-economic data. Curr Sci, 95: 345–354

    Google Scholar 

  • Strahler A N (1957). Quantative Analysis of Watershed geomorphology. Transactions. American Geophysical Union, 38(6): 913–920

    Article  Google Scholar 

  • Strahler A N (1964). Quantitative geomorphology of drainage and channel networks. In: Chow V T, ed. Handbook of Applied Hydrology. New York: McGraw Hill Book Company, 439–476

    Google Scholar 

  • Subba Rao N (2009). A numerical scheme for groundwater development in a watershed basin of basement terrain: a case study from India. Hydrogeol J, 17(2): 379–396

    Article  Google Scholar 

  • Subba Rao N, Chakradhar G K J, Srinivas V (2001). Identification of groundwater potential zones using remote sensing techniques in and around Guntur Town, Andhra Pradesh, India. Journal of Indian Society of Remote Sensing, 29(1&2): 69–78

    Google Scholar 

  • Suja Rose R S, Krishnan N (2009). Spatial analysis of groundwater potential using remote sensing and GIS in the Kanyakumari and Nambiyar Basins, India. J Indian Soc Remote Sens, 37(4): 681–692

    Article  Google Scholar 

  • Suresh M, Sudhakar S, Tiwari K N, Chowdary V M (2004). Prioritization of watersheds using morphometric parameters and assessment of surface water potential using remote sensing. Journal of the Indian Society of Remote Sensing, 32(3): 249–259

    Article  Google Scholar 

  • Thakkar A K, Dhiman S D (2007). Morphometric analysis and prioritization of miniwatersheds in Mohr watershed, Gujarat, using remote sensing and GIS techniques. Journal of the Indian Society of Remote Sensing, 35(4): 313–321

    Article  Google Scholar 

  • Todd D K, Mays L W (2005). Groundwater Hydrology (3rd edition). New York: John Wiley & Sons, 636

    Google Scholar 

  • United State Geological Society (1997). Introduction to Potential Fields: Gravity. FS-239-95. Available onhttp://pubs.usgs.gov/fs/fs-0239-95/fs-0239-95.pdf, retrieved on 13th December, 2014

    Google Scholar 

  • United States Department of Agriculture, Natural Resource Conservation Service, and National Employee Development Centre (1999). SCS Runoff Equation: Module 205. Engineering and Hydrology Training Series, 1–27

    Google Scholar 

  • van Dijk A I J M, Renzullo L J (2011). Water resource monitoring systems and the role of satellite observations. Hydrol Earth Syst Sci, 15(1): 39–55

    Article  Google Scholar 

  • Verma R K (1985). Gravity field, seismicity, and tectonics of the Indian peninsula and the Himalayas (Solid earth sciences library). Holland: D. Reidel Publishing Company

    Book  Google Scholar 

  • Wagener T, Wheater H S, Gupta H V (2004). Rainfall-Runoff Modelling In: Gauged and Ungauged Catchments. London: Imperial College Press

    Book  Google Scholar 

  • Wagner W, Naeimi V, Scipal K, de Jeu R, Martinez-Fernandez J (2007). Soil moisture from operational meteorological satellites. Journal of Hydrogeology, 15(1): 121–131

    Article  Google Scholar 

  • Wahr J, Swenson S, Zlotnicki V, Velicogna I (2004). Timevariable gravity from GRACE: fist results. Geophys Res Lett, 31(11): L11501

    Article  Google Scholar 

  • Yeh H F, Lin H I, Lee S T, Chang M H, Hsu K C, Lee C H (2014). GIS and SBF for estimating groundwater recharge of a mountainous basin in the Wu River watershed, Taiwan. J Earth Syst Sci, 123(3): 503–516

    Article  Google Scholar 

  • Zankhna S, Thakkar M G (2014). Palaeochannel investigations and geo hydrological significance of Saraswati River of Mainland Gujarat, India: using remote sensing and GIS techniques. J Environ Res Develop, 9(2): 472–479

    Google Scholar 

  • Zhang H Y, Shi Z H, Fang N F, Guo M H (2015). Linking watershed geomorphic characteristics to sediment yield: evidence from the Loess Plateau of China. Geomorphology, 234: 19–27

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suvendu Roy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, S., Sahu, A.S. Effectiveness of basin morphometry, remote sensing, and applied geosciences on groundwater recharge potential mapping: a comparative study within a small watershed. Front. Earth Sci. 10, 274–291 (2016). https://doi.org/10.1007/s11707-016-0558-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11707-016-0558-3

Keywords

Navigation