Skip to main content
Log in

Hydroxyapatite/palmitic acid superhydrophobic composite coating on AZ31 magnesium alloy with both corrosion resistance and bacterial inhibition

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

The coating-modified magnesium (Mg) alloys exhibit controllable corrosion resistance, but the insufficient antibacterial performance limits their clinical applications as degradable implants. Superhydrophobic coatings show excellent performance in terms of both corrosion resistance and inhibition of bacterial adhesion and growth. In this work, a hydroxyapatite (HA)/palmitic acid (PA) superhydrophobic composite coating was fabricated on the Mg alloy by the hydrothermal technique and immersion treatment. The HA/PA composite coating showed superhydrophobicity with a contact angle of 153° and a sliding angle of 2°. The coated Mg alloy exhibited excellent corrosion resistance in the simulated body fluid, with high polarization resistance (77.10 kΩ·cm2) and low corrosion current density ((0.491 ± 0.015) µA·cm−2). Meanwhile, the antibacterial efficiency of the composite coating was over 98% against E. coli and S. aureus in different periods. The results indicate that the construction of such superhydrophobic composite coating (HA/PA) on the Mg alloy can greatly improve the corrosion resistance of Mg alloy implants within the human body and avoid bacterial infection during the initial stages of implantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Kashirina A, Yao Y T, Liu Y J, et al. Biopolymers as bone substitutes: a review. Biomaterials Science, 2019, 7(10): 3961–3983

    Article  CAS  PubMed  Google Scholar 

  2. Song M S, Zeng R C, Ding Y F, et al. Recent advances in biodegradation controls over Mg alloys for bone fracture management: a review. Journal of Materials Science and Technology, 2019, 35(4): 535–544

    Article  CAS  Google Scholar 

  3. Tsakiris V, Tardei C, Clicinschi F M. Biodegradable Mg alloys for orthopedic implants — a review. Journal of Magnesium and Alloys, 2021, 9(6): 1884–1905

    Article  CAS  Google Scholar 

  4. Shen Z Q, Zhao M, Zhou X, et al. A numerical corrosion-fatigue model for biodegradable Mg alloy stents. Acta Biomaterialia, 2019, 97: 671–680

    Article  CAS  PubMed  Google Scholar 

  5. Moaref R, Shahini M H, Mohammadloo H E, et al. Application of sustainable polymers for reinforcing bio-corrosion protection of magnesium implants — a review. Sustainable Chemistry and Pharmacy, 2022, 29(Oct): 100780

    Article  CAS  Google Scholar 

  6. Li D, Dai D N, Xiong G G, et al. Composite nanocoatings of biomedical magnesium alloy implants: advantages, mechanisms, and design strategies. Advanced Science, 2023, 10(18): 2300658 (19 pages)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wan P, Tan L L, Yang K. Surface modification on biodegradable magnesium alloys as orthopedic implant materials to improve the bio-adaptability: a review. Journal of Materials Science and Technology, 2016, 32(9): 827–834

    Article  CAS  Google Scholar 

  8. Ali M, Elsherif M, Salih A E, et al. Surface modification and cytotoxicity of Mg-based bio-alloys: an overview of recent advances. Journal of Alloys and Compounds, 2020, 825: 154140

    Article  CAS  Google Scholar 

  9. Sun X, Yao Q S, Li Y C, et al. Biocorrosion resistance and biocompatibility of Mg–Al layered double hydroxide/poly(L-lactic acid) hybrid coating on magnesium alloy AZ31. Frontiers of Materials Science, 2020, 14(4): 426–441

    Article  Google Scholar 

  10. Asemabadi Z, Korrani A M, Dolatabadi M M, et al. Modification of hydroxyapatite coating in the presence of adipic acid for Mg-based implant application. Progress in Organic Coatings, 2022, 172:107088

    Article  CAS  Google Scholar 

  11. Rezaei A, Golenji R B, Alipour F, et al. Hydroxyapatite/hydroxyapatite–magnesium double-layer coatings as potential candidates for surface modification of 316 LVM stainless steel implants. Ceramics International, 2020, 46(16): 25374–25381

    Article  CAS  Google Scholar 

  12. Roshan S, Mohammadloo H E, Sarabi A A, et al. Biocompatible hybrid chitosan/hydroxyapatite coating applied on the AZ31 Mg alloy substrate: in-vitro corrosion, surface and structure studies. Materials Today: Communications, 2022, 30: 103153

    CAS  Google Scholar 

  13. Rahman M, Li Y C, Wen C E. HA coating on Mg alloys for biomedical applications: a review. Journal of Magnesium and Alloys, 2020, 8(3): 929–943

    Article  CAS  Google Scholar 

  14. Asadi H, Ghalei S, Handa H, et al. Cellulose nanocrystal reinforced silk fibroin coating for enhanced corrosion protection and biocompatibility of Mg-based alloys for orthopedic implant applications. Progress in Organic Coatings, 2021, 161: 106525

    Article  CAS  Google Scholar 

  15. Zhang Z Y, Wang D, Liang L X, et al. Corrosion resistance of Ca–P coating induced by layer-by-layer assembled polyvinylpyrrolidone/DNA multilayer on magnesium AZ31 alloy. Frontiers of Materials Science, 2021, 15(3): 391–405

    Article  Google Scholar 

  16. Arcos D, Vallet-Regi M. Substituted hydroxyapatite coatings of bone implants. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2020, 8(9): 1781–1800

    Article  CAS  PubMed  Google Scholar 

  17. Li T T, Ling L, Lin M C, et al. Recent advances in multifunctional hydroxyapatite coating by electrochemical deposition. Journal of Materials Science, 2020, 55(15): 6352–6374

    Article  CAS  Google Scholar 

  18. Hu Q X, Wang Y H, Liu S H, et al. 3D printed polyetheretherketone bone tissue substitute modified via amoxicillin-laden hydroxyapatite nanocoating. Journal of Materials Science, 2022, 57(39): 18601–18614

    Article  CAS  Google Scholar 

  19. Chang L, Li X, Tang X, et al. Micro-patterned hydroxyapatite/silk fibroin coatings on Mg–Zn–Y–Nd–Zr alloys for better corrosion resistance and cell behavior guidance. Frontiers of Materials Science, 2020, 14(4): 413–425

    Article  Google Scholar 

  20. Shen S B, Cai S, Li Y, et al. Microwave aqueous synthesis of hydroxyapatite bilayer coating on magnesium alloy for orthopedic application. Chemical Engineering Journal, 2017, 309: 278–287

    Article  CAS  Google Scholar 

  21. Zhang A M, Lenin P, Zeng R C, et al. Advances in hydroxyapatite coatings on biodegradable magnesium and its alloys. Journal of Magnesium and Alloys, 2022, 10(5): 1154–1170

    Article  CAS  Google Scholar 

  22. Wang Y K, Teng W, Zhang Z, et al. A trilogy antimicrobial strategy for multiple infections of orthopedic implants throughout their life cycle. Bioactive Materials, 2021, 6(7): 1853–1866

    Article  CAS  PubMed  Google Scholar 

  23. Wang N, Ma Y T, Shi H X, et al. Mg-, Zn-, and Fe-based alloys with antibacterial properties as orthopedic implant materials. Frontiers in Bioengineering and Biotechnology, 2022, 10: 888084

    Article  PubMed  PubMed Central  Google Scholar 

  24. Xu G Q, Shen X K, Dai L L, et al. Reduced bacteria adhesion on octenidine loaded mesoporous silica nanoparticles coating on titanium substrates. Materials Science and Engineering C, 2017, 70: 386–395

    Article  CAS  PubMed  Google Scholar 

  25. Tian M, Cai S, Ling L, et al. Superhydrophilic hydroxyapatite/hydroxypropyltrimethyl ammonium chloride chitosan composite coating for enhancing the antibacterial and corrosion resistance of magnesium alloy. Progress in Organic Coatings, 2022, 165: 106745

    Article  CAS  Google Scholar 

  26. He X J, Zhang G, Zhang H, et al. Cu and Si co-doped microporous TiO2 coating for osseointegration by the coordinated stimulus action. Applied Surface Science, 2020, 503: 144072

    Article  CAS  Google Scholar 

  27. Mahmoudi P, Akbarpour M R, Lakeh H B, et al. Antibacterial Ti-Cu implants: a critical review on mechanisms of action. Materials Today: Bio, 2022, 17: 100447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Makvandi P, Wang C Y, Zare E N, et al. Metal-based nanomaterials in biomedical applications: antimicrobial activity and cytotoxicity aspects. Advanced Functional Materials, 2020, 30(22): 1910021

    Article  CAS  Google Scholar 

  29. Sun J Y, Liu X, Lyu C, et al. Synergistic antibacterial effect of graphene-coated titanium loaded with levofloxacin. Colloids and Surfaces B: Biointerfaces, 2021, 208: 112090

    Article  CAS  PubMed  Google Scholar 

  30. Peng M K, Hu F, Du M, et al. Hydrothermal growth of hydroxyapatite and ZnO bilayered nanoarrays on magnesium alloy surface with antibacterial activities. Frontiers of Materials Science, 2020, 14(1): 14–23

    Article  Google Scholar 

  31. Ji X J, Cheng Q, Wang J, et al. Corrosion resistance and antibacterial effects of hydroxyapatite coating induced by polyacrylic acid and gentamicin sulfate on magnesium alloy. Frontiers of Materials Science, 2019, 13(1): 87–98

    Article  Google Scholar 

  32. Ahmadi H, Ghamsarizade R, Haddadi-Asl V, et al. Designing a novel bio-compatible hydroxyapatite (HA)/hydroxyquinoline (8-HQ)-inbuilt polyvinylalcohol (PVA) composite coatings on Mg AZ31 implants via electrospinning and immersion protocols: smart anti-corrosion and anti-bacterial properties reinforcements. Journal of Industrial and Engineering Chemistry, 2022, 116: 556–571

    Article  CAS  Google Scholar 

  33. Guo Y T, Jia S, Qiao L, et al. A multifunctional polypyrrole/zinc oxide composite coating on biodegradable magnesium alloys for orthopedic implants. Colloids and Surfaces B: Biointerfaces, 2020, 194: 111186

    Article  CAS  PubMed  Google Scholar 

  34. Ji X J, Gao L, Liu J C, et al. Corrosion resistance and antibacterial properties of hydroxyapatite coating induced by gentamicin-loaded polymeric multilayers on magnesium alloys. Colloids and Surfaces B: Biointerfaces, 2019, 179: 429–436

    Article  CAS  PubMed  Google Scholar 

  35. Darby E M, Trampari E, Siasat P, et al. Molecular mechanisms of antibiotic resistance revisited. Nature Reviews: Microbiology, 2023, 21(5): 280–295

    CAS  PubMed  Google Scholar 

  36. Moon C H, Yasmeen S, Park K, et al. Icephobic coating through a self-formed superhydrophobic surface using a polymer and microsized particles. ACS Applied Materials & Interfaces, 2022, 14(2): 3334–3343

    Article  CAS  Google Scholar 

  37. Yang M P, Liu W Q, Jiang C, et al. Facile fabrication of robust fluorine-free superhydrophobic cellulosic fabric for self-cleaning, photocatalysis and UV shielding. Cellulose, 2019, 26(13–14): 8153–8164

    Article  CAS  Google Scholar 

  38. Zeng Q H, Zhou H, Huang J X, et al. Review on the recent development of durable superhydrophobic materials for practical applications. Nanoscale, 2021, 13(27): 11734–11764

    Article  CAS  PubMed  Google Scholar 

  39. Khadak A, Subeshan B, Asmatulu R. Studies on de-icing and anti-icing of carbon fiber-reinforced composites for aircraft surfaces using commercial multifunctional permanent superhydrophobic coatings. Journal of Materials Science, 2021, 56(4): 3078–3094

    Article  CAS  Google Scholar 

  40. Sun Y H, Guo Z G. Recent advances of bioinspired functional materials with specific wettability: from nature and beyond nature. Nanoscale Horizons, 2019, 4(1): 52–76

    Article  CAS  PubMed  Google Scholar 

  41. Si Y F, Dong Z C, Jiang L. Bioinspired designs of superhydrophobic and superhydrophilic materials. ACS Central Science, 2018, 4(9): 1102–1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Esmeryan K D, Avramova I A, Castano C E, et al. Early stage anti-bioadhesion behavior of superhydrophobic soot based coatings towards Pseudomonas putida. Materials & Design, 2018, 160: 395–404

    Article  CAS  Google Scholar 

  43. Sharifikolouei E, Najmi Z, Cochis A, et al. Generation of cytocompatible superhydrophobic Zr–Cu–Ag metallic glass coatings with antifouling properties for medical textiles. Materials Today: Bio, 2021, 12: 100148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wu X H, Liew Y K, Lim W M, et al. Blood compatible and noncytotoxic superhydrophobic graphene/titanium dioxide coating with antibacterial and antibiofilm properties. Journal of Applied Polymer Science, 2023, 140(11): e53629

    Article  CAS  Google Scholar 

  45. Wu X Y, Yang F, Gan J, et al. A superhydrophobic, antibacterial, and durable surface of poplar wood. Nanomaterials, 2021, 11(8): 1885

    Article  PubMed  PubMed Central  Google Scholar 

  46. Izadyar S, Aghabozorgi M, Azadfallah M. Palmitic acid functionalization of cellulose fibers for enhancing hydrophobic property. Cellulose, 2020, 27(10): 5871–5878

    Article  CAS  Google Scholar 

  47. Li J, Gao R, Wang Y, et al. Superhydrophobic palmitic acid modified Cu(OH)2/CuS nanocomposite-coated copper foam for efficient separation of oily wastewater. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 637: 128249

    Article  CAS  Google Scholar 

  48. Innis S M. Palmitic acid in early human development. Critical Reviews in Food Science and Nutrition, 2016, 56(12): 1952–1959

    Article  CAS  PubMed  Google Scholar 

  49. Fatima S, Hu X, Gong R H, et al. Palmitic acid is an intracellular signaling molecule involved in disease development. Cellular and Molecular Life Sciences, 2019, 76(13): 2547–2557

    Article  CAS  PubMed  Google Scholar 

  50. Bahmani A, Lotfpour M, Taghizadeh M, et al. Corrosion behavior of severely plastically deformed Mg and Mg alloys. Journal of Magnesium and Alloys, 2022, 10(10): 2607–2648

    Article  CAS  Google Scholar 

  51. Sun J Y, Cai S, Wei J, et al. Long-term corrosion resistance and fast mineralization behavior of micro–nano hydroxyapatite coated magnesium alloy in vitro. Ceramics International, 2020, 46(1): 824–832

    Article  CAS  Google Scholar 

  52. Ouyang Y Y, Zhang Z, Huang W, et al. Electrodeposition of F-doped hydroxyapatite–TiO2 coating on AZ31 magnesium alloy for enhancing corrosion protection and biocompatibility. Journal of Materials Science, 2022, 57(36): 17188–17202

    Article  CAS  Google Scholar 

  53. Ling L, Cai S, Li Q Q, et al. Recent advances in hydrothermal modification of calcium phosphorus coating on magnesium alloy. Journal of Magnesium and Alloys, 2022, 10(1): 62–80

    Article  CAS  Google Scholar 

  54. Harun W S W, Asri R I M, Alias J, et al. A comprehensive review of hydroxyapatite-based coatings adhesion on metallic biomaterials. Ceramics International, 2018, 44(2): 1250–1268

    Article  CAS  Google Scholar 

  55. Jeong J U, Heo Y G, Cho J A, et al. Nanostructure-based wettability modification of TiAl6V4 alloy surface for modulating biofilm production: superhydrophilic, superhydrophobic, and slippery surfaces. Journal of Alloys and Compounds, 2022, 923:166492

    Article  CAS  Google Scholar 

  56. Park H C, Baek D J, Park Y M, et al. Thermal stability of hydroxyapatite whiskers derived from the hydrolysis of α-TCP. Journal of Materials Science, 2004, 39(7): 2531–2534

    Article  CAS  Google Scholar 

  57. Zhang H Q, Yan Y H, Wang Y F, et al. Thermal stability of hydroxyapatite whiskers prepared by homogenous precipitation. Advanced Engineering Materials, 2002, 4(12): 916–919

    Article  CAS  Google Scholar 

  58. Li J Y, Lu S, Xu W, et al. Fabrication of stable Ni–Al4Ni3–Al2O3 superhydrophobic surface on aluminum substrate for self-cleaning, anti-corrosive and catalytic performance. Journal of Materials Science, 2018, 53(2): 1097–1109

    Article  CAS  Google Scholar 

  59. Ding Z Y, Yuan Q H, Wang H, et al. Anticorrosion behaviour and tribological properties of AZ31 magnesium alloy coated with Nb2O5/Nb2O5–Mg/Mg layer by magnetron sputtering. RSC Advances, 2022, 12(43): 28196–28206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang C, Zhou Z, Wang X, et al. A multifunctional coating with silk fibroin/chitosan quaternary ammonium salt/heparin sodium for AZ31B magnesium alloy. Materials Today: Communications, 2023, 34(Mar): 105070

    CAS  Google Scholar 

  61. Hsu C H, Mansfeld F. Technical note: concerning the conversion of the constant phase element parameter Y0 into a capacitance. Corrosion, 2001, 57(9): 747–748

    Article  CAS  Google Scholar 

  62. Gittings J P, Bowen C R, Dent A C E, et al. Electrical characterization of hydroxyapatite-based bioceramics. Acta Biomaterialia, 2009, 5(2): 743–754

    Article  CAS  PubMed  Google Scholar 

  63. Lin M H, Wang Y H, Kuo C H, et al. Hybrid ZnO/chitosan antimicrobial coatings with enhanced mechanical and bioactive properties for titanium implants. Carbohydrate Polymers, 2021, 257:117639

    Article  CAS  PubMed  Google Scholar 

  64. Lin Z S, Sun X T, Yang H Z. The role of antibacterial metallic elements in simultaneously improving the corrosion resistance and antibacterial activity of magnesium alloys. Materials & Design, 2021, 198: 109350

    Article  CAS  Google Scholar 

  65. Tian M N, Lin Z F, Tang W Y, et al. Electrophoretic deposition of tetracycline loaded bioactive glasses/chitosan as antibacterial and bioactive composite coatings on magnesium alloys. Progress in Organic Coatings, 2023, 184: 107841

    Article  CAS  Google Scholar 

  66. Xing K, Chen Q, Lin J, et al. Polycaprolactone/ZnO coating on WE43 magnesium alloy combined with a MgO/MgCO3 transition layer for promoting anticorrosion and interfacial adhesion. Progress in Organic Coatings, 2022, 171: 107029

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their sincere gratitude to the National Natural Science Foundation of China (Grant Nos. 52271246 and 82272533) and the Shanghai Sailing Program (Grant No. 21YF1458200) or providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shu Cai or Guohua Xu.

Ethics declarations

Declaration of competing interests The authors declare that they have no relevant financial or non-financial interests to disclose, no competing interests to declare that are relevant to the content of this article, no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript, and no financial or proprietary interests in any material discussed in this article.

Electronic supplementary material

11706_2024_678_MOESM1_ESM.pdf

Hydroxyapatite/palmitic acid superhydrophobic composite coating on AZ31 magnesium alloy with both corrosion resistance and bacterial inhibition

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Cai, S., Zhang, H. et al. Hydroxyapatite/palmitic acid superhydrophobic composite coating on AZ31 magnesium alloy with both corrosion resistance and bacterial inhibition. Front. Mater. Sci. 18, 240678 (2024). https://doi.org/10.1007/s11706-024-0678-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11706-024-0678-8

Keywords

Navigation