Skip to main content
Log in

Design and fabrication of NiFe2O4/few-layers WS2 composite for supercapacitor electrode material

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Few-layers WS2 was obtained through unique chemical liquid exfoliation of commercial WS2. Results showed that after the exfoliation process, the thickness of WS2 reduced significantly. Moreover, the NiFe2O4 nanosheets/WS2 composite was successfully synthesized through a facile hydrothermal method at 180 °C, and then proven by the analyses of field emission scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The composite showed a high specific surface area of 86.89 m2·g−1 with an average pore size of 3.13 nm. Besides, in the three-electrode electrochemical test, this composite exhibited a high specific capacitance of 878.04 F·g−1 at a current density of 1 A·g−1, while in the two-electrode system, the energy density of the composite could reach 25.47 Wh·kg−1 at the power density of 70 W·kg−1 and maintained 13.42 Wh·kg−1 at the higher power density of 7000 W·kg−1. All the excellent electrochemical performances demonstrate that the NiFe2O4 nanosheets/WS2 composite is an excellent candidate for supercapacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhu J, Li P, Wang G, et al. Design strategy for high-performance bifunctional electrode materials with heterogeneous structures formed by hydrothermal sulfur etching. Journal of Colloid and Interface Science, 2023, 633: 608–618

    Article  CAS  Google Scholar 

  2. Nguyen Q T, Nakate U T, Chen J, et al. Ceria nanoflowers decorated Co3O4 nanosheets electrodes for highly efficient electrochemical supercapacitors. Applied Surface Science, 2023, 613: 156034

    Article  CAS  Google Scholar 

  3. Wang Q, Wang X. Regulating the supercapacitor properties of hollow NiCo–LDHs via morphology engineering. Journal of Alloys and Compounds, 2023, 937: 168396

    Article  CAS  Google Scholar 

  4. Ren B, Wang X e, Zhang X, et al. Designed formation of hierarchical core–shell NiCo2S4 @NiMoO4 arrays on cornstalk biochar as battery-type electrodes for hybrid supercapacitors. Journal of Alloys and Compounds, 2023, 937: 168403

    Article  CAS  Google Scholar 

  5. Wei X, Cai M, Yuan F, et al. The surface functional modification of Ti3C2Tx MXene by phosphorus doping and its application in quasi-solid state flexible supercapacitor. Applied Surface Science, 2022, 606: 154817

    Article  CAS  Google Scholar 

  6. Pan Z, Li X, Yang C, et al. One-step construction of Ti3C2Tx/MoS2 hierarchical 3D porous heterostructure for ultrahigh-rate supercapacitor. Journal of Colloid and Interface Science, 2023, 634: 460–468

    Article  CAS  Google Scholar 

  7. Qu X, Kwon Y W, Jeon S, et al. Foldable and wearable supercapacitors for powering healthcare monitoring applications with improved performance based on hierarchically co-assembled CoO/NiCo networks. Journal of Colloid and Interface Science, 2023, 634: 715–729

    Article  CAS  Google Scholar 

  8. Bhattarai R M, Chhetri K, Natarajan S, et al. Activated carbon derived from cherry flower biowaste with a self-doped heteroatom and large specific surface area for supercapacitor and sodium-ion battery applications. Chemosphere, 2022, 303 (Pt 3): 135290

    Article  CAS  Google Scholar 

  9. Uddin M S, Tanaya Das H, Maiyalagan T, et al. Influence of designed electrode surfaces on double layer capacitance in aqueous electrolyte: insights from standard models. Applied Surface Science, 2018, 449: 445–453

    Article  CAS  Google Scholar 

  10. Zardkhoshoui A M, Davarani S S H. Construction of complex copper-cobalt selenide hollow structures as an attractive battery-type electrode material for hybrid supercapacitors. Chemical Engineering Journal, 2020, 402: 126241

    Article  CAS  Google Scholar 

  11. Eftekhari A, Mohamedi M. Tailoring pseudocapacitive materials from a mechanistic perspective. Materials Today: Energy, 2017, 6: 211–229

    Google Scholar 

  12. Lv H, Xiao Z, Zhai S, et al. Construction of nickel ferrite nanoparticle-loaded on carboxymethyl cellulose-derived porous carbon for efficient pseudocapacitive energy storage. Journal of Colloid and Interface Science, 2022, 622: 327–335

    Article  CAS  Google Scholar 

  13. Arun T, Kavinkumar T, Udayabhaskar R, et al. NiFe2O4 nanospheres with size-tunable magnetic and electrochemical properties for superior supercapacitor electrode performance. Electrochimica Acta, 2021, 399: 139346

    Article  CAS  Google Scholar 

  14. Bandgar S B, Vadiyar M M, Jambhale C L, et al. Superfast ice crystal-assisted synthesis of NiFe2O4 and ZnFe2O4 nanostructures for flexible high-energy density asymmetric supercapacitors. Journal of Alloys and Compounds, 2021, 853: 157129

    Article  CAS  Google Scholar 

  15. Deyab M A, Awadallah A E, Ahmed H A, et al. Progress study on nickel ferrite alloy–graphene nanosheets nanocomposites as supercapacitor electrodes. Journal of Energy Storage, 2022, 46: 103926

    Article  Google Scholar 

  16. Patil P D, Shingte S R, Karade V C, et al. Effect of annealing temperature on morphologies of metal organic framework derived NiFe2O4 for supercapacitor application. Journal of Energy Storage, 2021, 40: 102821

    Article  Google Scholar 

  17. Huang T, Cui W, Qiu Z, et al. 2D porous layered NiFe2O4 by a facile hydrothermal method for asymmetric supercapacitor. Ionics, 2021, 27(3): 1347–1355

    Article  CAS  Google Scholar 

  18. Gao X, Wang W, Bi J, et al. Morphology-controllable preparation of NiFe2O4 as high performance electrode material for supercapacitor. Electrochimica Acta, 2019, 296: 181–189

    Article  CAS  Google Scholar 

  19. Liu R, Shi X R, Wen Y, et al. Trimetallic synergistic optimization of 0D NiCoFe-P QDs anchoring on 2D porous carbon for efficient electrocatalysis and high-energy supercapacitor. Journal of Energy Chemistry, 2022, 74: 149–158

    Article  CAS  Google Scholar 

  20. Zhang M, Zhou W, Yan X, et al. Sodium dodecyl sulfate intercalated two-dimensional nickel-cobalt layered double hydroxides to synthesize multifunctional nanomaterials for supercapacitors and electrocatalytic hydrogen evolution. Fuel, 2023, 333: 126323

    Article  CAS  Google Scholar 

  21. Luan X, Zhu K, Zhang X, et al. MoS2 nanosheets coupled with double-layered hollow carbon spheres towards superior electrochemical activity. Electrochimica Acta, 2022, 407: 139929

    Article  CAS  Google Scholar 

  22. Raj K A S, Barman N, Namsheer K, et al. CrSe2/Ti3C2 MXene 2D/2D hybrids as promising candidates for energy storage applications. Sustainable Energy & Fuels, 2022, 6(22): 5187–5198

    Article  Google Scholar 

  23. Samuel E, Aldalbahi A, El-Newehy M, et al. Nickel ferrite beehive-like nanosheets for binder-free and high-energy-storage supercapacitor electrodes. Journal of Alloys and Compounds, 2021, 852: 156929

    Article  CAS  Google Scholar 

  24. Kuttan S S, Girija N, Devaki S J, et al. Modulating electrochemical performance of interfacially polymerized, MoS2 decorated polyaniline composites for electrochemical capacitor applications. ACS Applied Energy Materials, 2022, 5(7): 8510–8525

    Article  CAS  Google Scholar 

  25. Bi S, Salanne M. Co-ion desorption as the main charging mechanism in metallic 1T-MoS2 Supercapacitors. ACS Nano, 2022, 16(11): 18658–18666

    Article  CAS  Google Scholar 

  26. Zhang X, Yang P, Jiang S P. Horizontally growth of WS2/WO3 heterostructures on crystalline g-C3N4 nanosheets towards enhanced photo/electrochemical performance. Journal of Nanostructure in Chemistry, 2021, 11(3): 367–380

    Article  CAS  Google Scholar 

  27. Zhang X, Yang P, Jiang S P. Ni clusters-derived 2D/2D layered WOx(MoS2)/Ni–g-C3N4 step-scheme heterojunctions with enhanced photo- and electro-catalytic performance. Journal of Power Sources, 2021, 510: 230420

    Article  CAS  Google Scholar 

  28. Shang X, Chi J Q, Lu S S, et al. Carbon fiber cloth supported interwoven WS2 nanosplates with highly enhanced performances for supercapacitors. Applied Surface Science, 2017, 392: 708–714

    Article  CAS  Google Scholar 

  29. Ray S K, Pant B, Park M, et al. Cavity-like hierarchical architecture of WS2/α-NiMoO4 electrodes for supercapacitor application. Ceramics International, 2020, 46(11): 19022–19027

    Article  CAS  Google Scholar 

  30. Ghorai A, Ray S K, Midya A. Ethylenediamine-assisted high yield exfoliation of MoS2 for flexible solid-state supercapacitor application. ACS Applied Nano Materials, 2019, 2(3): 1170–1177

    Article  CAS  Google Scholar 

  31. Lei W, Xiao J L, Liu H P, et al. Tungsten disulfide: synthesis and applications in electrochemical energy storage and conversion. Tungsten, 2020, 2(3): 217–239

    Article  Google Scholar 

  32. Dai Y, Wu X, Sha D, et al. Facile self-assembly of Fe3O4 nanoparticles@WS2 nanosheets: a promising candidate for supercapacitor electrode. Electronic Materials Letters, 2016, 12(6): 789–794

    Article  CAS  Google Scholar 

  33. Shen J, He Y, Wu J, et al. Liquid phase exfoliation of two-dimensional materials by directly probing and matching surface tension components. Nano Letters, 2015, 15(8): 5449–5454

    Article  CAS  Google Scholar 

  34. Lin H, Wang J, Luo Q, et al. Rapid and highly efficient chemical exfoliation of layered MoS2 and WS2. Journal of Alloys and Compounds, 2017, 699: 222–229

    Article  CAS  Google Scholar 

  35. Gao P, Shen B, Zhao P, et al. Tuning the Mn2+/Mn3+ ratio of ZnMn2O4 from spent zinc–carbon battery powder to enhance the electrochemical performance. Journal of Power Sources, 2023, 577: 233231

    Article  CAS  Google Scholar 

  36. Wang Y, Wang J, Wei D, et al. Multicore–shell MnO2@Ppy@N-doped porous carbon nanofiber ternary composites as electrode materials for high-performance supercapacitors. Journal of Colloid and Interface Science, 2023, 648: 925–939

    Article  CAS  Google Scholar 

  37. Naoi K, Ishimoto S, Isobe Y, et al. High-rate nano-crystalline Li4Ti5O12 attached on carbon nano-fibers for hybrid supercapacitors. Journal of Power Sources, 2010, 195(18): 6250–6254

    Article  CAS  Google Scholar 

  38. Gao X, Bi J, Wang W, et al. Morphology-controllable synthesis of NiFe2O4 growing on graphene nanosheets as advanced electrode material for high performance supercapacitors. Journal of Alloys and Compounds, 2020, 826: 154088

    Article  CAS  Google Scholar 

  39. Thommes M, Kaneko K, Neimark A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 2015, 87(9–10): 1051–1069

    Article  CAS  Google Scholar 

  40. Mansour A N. Characterization of β-Ni(OH)2 by XPS. Surface Science Spectra, 1994, 3(3): 239–246

    Article  CAS  Google Scholar 

  41. Zhang X, Yang P, Jiang S P. NiCo-layered double hydroxide/g-C3N4 heterostructures with enhanced adsorption capacity and photoreduction of Cr(VI). Applied Surface Science, 2021, 556: 149772

    Article  CAS  Google Scholar 

  42. Yamashita T, Hayes P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Applied Surface Science, 2008, 254(8): 2441–2449

    Article  CAS  Google Scholar 

  43. Tomar A K, Singh G, Sharma R K. Fabrication of a Mo-doped strontium cobaltite perovskite hybrid supercapacitor cell with high energy density and excellent cycling life. ChemSusChem, 2018, 11(23): 4123–4130

    Article  CAS  Google Scholar 

  44. Hua M, Xu L, Cui F, et al. Hexamethylenetetramine-assisted hydrothermal synthesis of octahedral nickel ferrite oxide nanocrystallines with excellent supercapacitive performance. Journal of Materials Science, 2018, 53(10): 7621–7636

    Article  CAS  Google Scholar 

  45. Zhang X, Matras-Postolek K, Yang P, et al. Z-scheme WOx/Cu–g-C3N4 heterojunction nanoarchitectonics with promoted charge separation and transfer towards efficient full solar-spectrum photocatalysis. Journal of Colloid and Interface Science, 2023, 636: 646–656

    Article  CAS  Google Scholar 

  46. Latha M, Rani J V. WS2/graphene composite as cathode for rechargeable aluminum-dual ion battery. Journal of the Electrochemical Society, 2019, 167(7): 070501

    Article  Google Scholar 

  47. Gao X, Bi J, Gao J, et al. Partial sulfur doping induced lattice expansion of NiFe2O4 with enhanced electrochemical capacity for supercapacitor application. Electrochimica Acta, 2022, 426: 140739

    Article  CAS  Google Scholar 

  48. Sivakumar M, Muthukutty B, Panomsuwan G, et al. Facile synthesis of NiFe2O4 nanoparticle with carbon nanotube composite electrodes for high-performance asymmetric supercapacitor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648: 129188

    Article  CAS  Google Scholar 

  49. Zhang Y, Zhang W, Yu C, et al. Synthesis, structure and supercapacitive behavior of spinel NiFe2O4 and NiO@NiFe2O4 nanoparticles. Ceramics International, 2021, 47(7): 10063–10071

    Article  CAS  Google Scholar 

  50. Askari M B, Salarizadeh P. Binary nickel ferrite oxide (NiFe2O4) nanoparticles coated on reduced graphene oxide as stable and high-performance asymmetric supercapacitor electrode material. International Journal of Hydrogen Energy, 2020, 45(51): 27482–27491

    Article  CAS  Google Scholar 

  51. Hu B, Qin X, Asiri A M, et al. WS2 nanoparticles-encapsulated amorphous carbon tubes: a novel electrode material for supercapacitors with a high rate capability. Electrochemistry Communications, 2013, 28: 75–78

    Article  CAS  Google Scholar 

  52. Chen W, Yu X, Zhao Z, et al. Hierarchical architecture of coupling graphene and 2D WS2 for high-performance supercapacitor. Electrochimica Acta, 2019, 298: 313–320

    Article  CAS  Google Scholar 

  53. Ji J, Zhang L L, Ji H, et al. Nanoporous Ni(OH)2 thin film on 3D ultrathin-graphite foam for asymmetric supercapacitor. ACS Nano, 2013, 7(7): 6237–6243

    Article  CAS  Google Scholar 

  54. Simon P, Gogotsi Y, Dunn B. Where do batteries end and supercapacitors begin? Science, 2014, 343(6176): 1210–1211

    Article  CAS  Google Scholar 

  55. Malarvizhi M, Meyvel S, Sandhiya M, et al. Design and fabrication of cobalt and nickel ferrites based flexible electrodes for high-performance energy storage applications. Inorganic Chemistry Communications, 2021, 123: 108344

    Article  CAS  Google Scholar 

  56. Cai Y Z, Cao W Q, Zhang Y L, et al. Tailoring rGO–NiFe2O4 hybrids to tune transport of electrons and ions for supercapacitor electrodes. Journal of Alloys and Compounds, 2019, 811: 152011

    Article  CAS  Google Scholar 

  57. Lin T W, Sadhasivam T, Wang A Y, et al. Ternary composite nanosheets with MoS2/WS2/graphene heterostructures as high-performance cathode materials for supercapacitors. ChemElectroChem, 2018, 5(7): 1024–1031

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Major Basic Research Projects of Shandong Natural Science Foundation (ZR2018ZB0104), Science and Technology Development Project of Shandong Province (2016GGX102003 and 2017GGX20105), and Natural Science Foundation of Shandong Province (ZR2017BEM032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianqiang Bi.

Ethics declarations

Declaration of competing interests The authors declare that they have no competing interests.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Bi, J., Xie, L. et al. Design and fabrication of NiFe2O4/few-layers WS2 composite for supercapacitor electrode material. Front. Mater. Sci. 17, 230656 (2023). https://doi.org/10.1007/s11706-023-0656-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11706-023-0656-6

Keywords

Navigation