Skip to main content
Log in

Gold nanocages in cancer diagnosis, therapy, and theranostics: A brief review

  • Review Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Regarding the increasing number of cancer patients, the global burden of this disease is continuing to grow. Despite a considerable improvement in the diagnosis and treatment of various types of cancer, new diagnosis and treatment strategies are required. Nanotechnology, as an interesting and advanced field in medicine, is aimed to further advance both cancer diagnosis and treatment. Gold nanocages (AuNCs), with hollow interiors and porous walls, have received a great deal of interest in various biomedical applications such as diagnosis, imaging, drug delivery, and hyperthermia therapy due to their special physicochemical characteristics including the porous structure and surface functionalization as well as optical and photothermal properties. This review is focused on recent developments in therapeutic and diagnostic and applications of AuNCs with an emphasis on their theranostic applications in cancer diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferlay J, Colombet M, Soerjomataram I, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. International Journal of Cancer, 2019, 144(8): 1941–1953

    Article  CAS  Google Scholar 

  2. Miller K D, Siegel R L, Lin C C, et al. Cancer treatment and survivorship statistics, 2016. CA: a Cancer Journal for Clinicians, 2016, 66(4): 271–289

    Google Scholar 

  3. Abedi M, Abolmaali S S, Abedanzadeh M, et al. Core-shell imidazoline-functionalized mesoporous silica superparamagnetic hybrid nanoparticles as a potential theranostic agent for controlled delivery of platinum(II) compound. International Journal of Nanomedicine, 2020, 15: 2617–2631

    Article  CAS  Google Scholar 

  4. Abedi M, Abolmaali S S, Abedanzadeh M, et al. Citric acid functionalized silane coupling versus post-grafting strategy for dual pH and saline responsive delivery of cisplatin by Fe3O4/carboxyl functionalized mesoporous SiO2 hybrid nanoparticles: A-synthesis, physicochemical and biological characterization. Materials Science and Engineering C, 2019, 104: 109922

    Article  CAS  Google Scholar 

  5. Abedi M, Abolmaali S S, Heidari R, et al. Hierarchical mesoporous zinc-imidazole dicarboxylic acid MOFs: Surfactant-directed synthesis, pH-responsive degradation, and drug delivery. International Journal of Pharmaceutics, 2021, 602: 120685

    Article  CAS  Google Scholar 

  6. Chaturvedi V K, Singh A, Singh V K, et al. Cancer nanotechnology: A new revolution for cancer diagnosis and therapy. Current Drug Metabolism, 2019, 20(6): 416–429

    Article  CAS  Google Scholar 

  7. Alimardani V, Abolmaali S S, Tamaddon A M, et al. Recent advances on microneedle arrays-mediated technology in cancer diagnosis and therapy. Drug Delivery and Translational Research, 2021, 11(3): 788–816

    Article  Google Scholar 

  8. Fruscella M, Ponzetto A, Crema A, et al. The extraordinary progress in very early cancer diagnosis and personalized therapy: The role of oncomarkers and nanotechnology. Journal of Nanotechnology, 2016, 2016: 1–18

    Article  Google Scholar 

  9. Kaushik A, Jayant R D, Nair M, eds. Advances in Personalized Nanotherapeutics. Springer, 2017

  10. Grobmyer S R, Iwakuma N, Sharma P, et al. What is cancer nanotechnology? In: Cancer Nanotechnology: Methods and Protocols. Methods in Molecular Biology, 2010, 624: 1–9

    Article  Google Scholar 

  11. Jafari M, Abolmaali S S, Najafi H, et al. Hyperbranched polyglycerol nanostructures for anti-biofouling, multifunctional drug delivery, bioimaging and theranostic applications. International Journal of Pharmaceutics, 2020, 576: 118959

    Article  CAS  Google Scholar 

  12. Akhter S, Ahmad M Z, Ahmad F J, et al. Gold nanoparticles in theranostic oncology: Current state-of-the-art. Expert Opinion on Drug Delivery, 2012, 9(10): 1225–1243

    Article  CAS  Google Scholar 

  13. Chan W C W, Khademhosseini A, Parak W, et al. Cancer: Nanoscience and nanotechnology approaches. ACS Nano, 2017, 11(5): 4375–4376

    Article  CAS  Google Scholar 

  14. Alimardani V, Abolmaali S S, Yousefi G, et al. Microneedle arrays combined with nanomedicine approaches for transdermal delivery of therapeutics. Journal of Clinical Medicine, 2021, 10 (2): 181–214

    Article  CAS  Google Scholar 

  15. Brown S C, Palazuelos M, Sharma P, et al. Nanoparticle characterization for cancer nanotechnology and other biological applications. In: Cancer Nanotechnology: Methods and Protocols. Methods in Molecular Biology, 2010, 624: 39–65

    Article  CAS  Google Scholar 

  16. Lin G, Chen S, Mi P. Nanoparticles targeting and remodeling tumor microenvironment for cancer theranostics. Journal of Biomedical Nanotechnology, 2018, 14(7): 1189–1207

    Article  CAS  Google Scholar 

  17. Rawal S, Patel M M J. Threatening cancer with nanoparticle aided combination oncotherapy. Journal of Controlled Release, 2019, 301(301): 76–109

    Article  CAS  Google Scholar 

  18. Borandeh S, Alimardani V, Abolmaali S S, et al. Graphene family nanomaterials in Ocular applications: Physicochemical properties and toxicity. Chemical Research in Toxicology, 2021, 34(6): 1386–1402

    Article  CAS  Google Scholar 

  19. Taghizadeh S, Alimardani V, Roudbali P L, et al. Gold nanoparticles application in liver cancer. Photodiagnosis and Photodynamic Therapy, 2019, 25: 389–400

    Article  CAS  Google Scholar 

  20. Connor E E, Mwamuka J, Gole A, et al. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small, 2005, 1(3): 325–327

    Article  CAS  Google Scholar 

  21. Venditti I. Gold nanoparticles in photonic crystals applications: A review. Materials, 2017, 10(2): 97–115

    Article  Google Scholar 

  22. Elahi N, Kamali M, Baghersad M H J T. Recent biomedical applications of gold nanoparticles: A review. Talanta, 2018, 184: 537–556

    Article  CAS  Google Scholar 

  23. Huang X, El-Sayed M A J. Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. Journal of Advanced Research, 2010, 1(1): 13–28

    Article  Google Scholar 

  24. Kang M S, Lee S Y, Kim K S, et al. State of the art biocompatible gold nanoparticles for cancer theragnosis. Pharmaceutics, 2020, 12(8): 701–723

    Article  CAS  Google Scholar 

  25. Bai X, Wang Y, Song Z, et al. The basic properties of gold nanoparticles and their applications in tumor diagnosis and treatment. International Journal of Molecular Sciences, 2020, 21 (7): 2480–2497

    Article  CAS  Google Scholar 

  26. Skrabalak S E, Au L, Lu X, et al. Gold nanocages for cancer detection and treatment. Nanomedicine, 2007, 2(5): 657–668

    Article  CAS  Google Scholar 

  27. Xia X, Xia Y. Gold nanocages as multifunctional materials for nanomedicine. Frontiers in Physics, 2014, 9(3): 378–384

    Article  Google Scholar 

  28. Yao H, Long X, Cao L, et al. Multifunctional ferritin nanocages for bimodal imaging and targeted delivery of doxorubicin into cancer cells. RSC Advances, 2016, 6(111): 109322–109333

    Article  CAS  Google Scholar 

  29. Jiang B, Yan L, Zhang J, et al. Biomineralization synthesis of the cobalt nanozyme in SP94-ferritin nanocages for prognostic diagnosis of hepatocellular carcinoma. ACS Applied Materials & Interfaces, 2019, 11(10): 9747–9755

    Article  CAS  Google Scholar 

  30. Kosaki Y, Izawa H, Ishihara S, et al. Nanoporous carbon sensor with cage-in-fiber structure: Highly selective aniline adsorbent toward cancer risk management. ACS Applied Materials & Interfaces, 2013, 5(8): 2930–2934

    Article  CAS  Google Scholar 

  31. Luo Y, Wang X, Du D, et al. Hyaluronic acid-conjugated apoferritin nanocages for lung cancer targeted drug delivery. Biomaterials Science, 2015, 3(10): 1386–1394

    Article  CAS  Google Scholar 

  32. Hood Z D, Kubelick K P, Gilroy K D, et al. Photothermal transformation of Au-Ag nanocages under pulsed laser irradiation. Nanoscale, 2019, 11(6): 3013–3020

    Article  CAS  Google Scholar 

  33. Wang Y, Xiao Y, Zhou H, et al. Ultra-high payload of doxorubicin and pH-responsive drug release in CuS nanocages for a combination of chemotherapy and photothermal therapy. RSC Advances, 2013, 3(45): 23133–23138

    Article  CAS  Google Scholar 

  34. Wang T, Zhang L, Su Z, et al. Multifunctional hollow mesoporous silica nanocages for cancer cell detection and the combined chemotherapy and photodynamic therapy. ACS Applied Materials & Interfaces, 2011, 3(7): 2479–2486

    Article  CAS  Google Scholar 

  35. Huang S, Li C, Wang W, et al. A54 peptide-mediated functionalized gold nanocages for targeted delivery of DOX as a combinational photothermal-chemotherapy for liver cancer. International Journal of Nanomedicine, 2017, 12: 5163–5176

    Article  CAS  Google Scholar 

  36. Raniolo S, Vindigni G, Ottaviani A, et al. Selective targeting and degradation of doxorubicin-loaded folate-functionalized DNA nanocages. Nanomedicine: Nanotechnology, Biology and Medicine, 2018, 14(4): 1181–1190

    Article  CAS  Google Scholar 

  37. Skrabalak S E, Chen J, Sun Y, et al. Gold nanocages: Synthesis, properties, and applications. Accounts of Chemical Research, 2008, 41(12): 1587–1595

    Article  CAS  Google Scholar 

  38. Hu F, Zhang Y, Chen G, et al. Double-walled Au nanocage/SiO2 nanorattles: Integrating SERS imaging, drug delivery and photothermal therapy. Small, 2015, 11(8): 985–993

    Article  CAS  Google Scholar 

  39. Cabuzu D, Cirja A, Puiu R, et al. Biomedical applications of gold nanoparticles. Current Topics in Medicinal Chemistry, 2015, 15 (16): 1605–1613

    Article  CAS  Google Scholar 

  40. Behnam M A, Emami F, Sobhani Z, et al. Novel combination of silver nanoparticles and carbon nanotubes for plasmonic photo thermal therapy in melanoma cancer model. Advanced Pharmaceutical Bulletin, 2018, 8(1): 49–55

    Article  CAS  Google Scholar 

  41. Van de Broek B, Frederix F, Bonroy K, et al. Shape-controlled synthesis of NIR absorbing branched gold nanoparticles and morphology stabilization with alkanethiols. Nanotechnology, 2011, 22(1): 015601

    Article  CAS  Google Scholar 

  42. Yang X, Skrabalak S E, Li Z Y, et al. Photoacoustic tomography of a rat cerebral cortex in vivo with Au nanocages as an optical contrast agent. Nano Letters, 2007, 7(12): 3798–3802

    Article  CAS  Google Scholar 

  43. Kim C, Cho E C, Chen J, et al. In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages. ACS Nano, 2010, 4(8): 4559–4564

    Article  CAS  Google Scholar 

  44. Cho E C, Zhang Y, Cai X, et al. Quantitative analysis of the fate of gold nanocages in vitro and in vivo after uptake by U87-MG tumor cells. Angewandte Chemie International Edition, 2013, 52 (4): 1152–1155

    Article  CAS  Google Scholar 

  45. Cai X, Li W, Kim C H, et al. In vivo quantitative evaluation of the transport kinetics of gold nanocages in a lymphatic system by noninvasive photoacoustic tomography. ACS Nano, 2011, 5(12): 9658–9667

    Article  CAS  Google Scholar 

  46. Song K H, Kim C, Cobley C M, et al. Near-infrared gold nanocages as a new class of tracers for photoacoustic sentinel lymph node mapping on a rat model. Nano Letters, 2009, 9(1): 183–188

    Article  CAS  Google Scholar 

  47. Cang H, Sun T, Li Z Y, et al. Gold nanocages as contrast agents for spectroscopic optical coherence tomography. Optics Letters, 2005, 30(22): 3048–3050

    Article  CAS  Google Scholar 

  48. Wen S, Miao X, Fan G C, et al. Aptamer-conjugated Au nanocage/SiO2 core-shell bifunctional nanoprobes with high stability and biocompatibility for cellular SERS imaging and near-infrared photothermal therapy. ACS Sensors, 2019, 4(2): 301–308

    Article  Google Scholar 

  49. Cao X, Wang Z, Bi L, et al. Gold nanocage-based surface-enhanced Raman scattering probes for long-term monitoring of intracellular microRNA during bone marrow stem cell differentiation. Nanoscale, 2020, 12(3): 1513–1527

    Article  CAS  Google Scholar 

  50. Yang Y, Fu Y, Su H, et al. Sensitive detection of MCF-7 human breast cancer cells by using a novel DNA-labeled sandwich electrochemical biosensor. Biosensors & Bioelectronics, 2018, 122: 175–182

    Article  CAS  Google Scholar 

  51. Chen M, Wu D, Tu S, et al. A novel biosensor for the ultrasensitive detection of the lncRNA biomarker MALAT1 in non-small cell lung cancer. Scientific Reports, 2021, 11(1): 3666

    Article  CAS  Google Scholar 

  52. Wang Y, Xu J, Xia X, et al. SV119-gold nanocage conjugates: A new platform for targeting cancer cells via sigma-2 receptors. Nanoscale, 2012, 4(2): 421–424

    Article  CAS  Google Scholar 

  53. Mackey M A, Saira F, Mahmoud M A, et al. Inducing cancer cell death by targeting its nucleus: Solid gold nanospheres versus hollow gold nanocages. Bioconjugate Chemistry, 2013, 24(6): 897–906

    Article  CAS  Google Scholar 

  54. Chen J, Wang D, Xi J, et al. Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Letters, 2007, 7(5): 1318–1322

    Article  CAS  Google Scholar 

  55. Liang R, Xie J, Li J, et al. Liposomes-coated gold nanocages with antigens and adjuvants targeted delivery to dendritic cells for enhancing antitumor immune response. Biomaterials, 2017, 149: 41–50

    Article  CAS  Google Scholar 

  56. Zhu D M, Xie W, Xiao Y S, et al. Erythrocyte membrane-coated gold nanocages for targeted photothermal and chemical cancer therapy. Nanotechnology, 2018, 29(8): 084002–084017

    Article  Google Scholar 

  57. Yang J, Shen D, Zhou L, et al. Spatially confined fabrication of core-shell gold nanocages@mesoporous silica for near-infrared controlled photothermal drug release. Chemistry of Materials, 2013, 25(15): 3030–3037

    Article  CAS  Google Scholar 

  58. He H, Liu L, Zhang S, et al. Smart gold nanocages for mild heat-triggered drug release and breaking chemoresistance. Journal of Controlled Release, 2020, 323: 387–397

    Article  CAS  Google Scholar 

  59. Zhang Z, Wang Y, Xu S, et al. Photothermal gold nanocages filled with temperature sensitive tetradecanol and encapsulated with glutathione responsive polycurcumin for controlled DOX delivery to maximize anti-MDR tumor effects. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2017, 5(27): 5464–5472

    Article  CAS  Google Scholar 

  60. Shi P, Qu K, Wang J, et al. pH-responsive NIR enhanced drug release from gold nanocages possesses high potency against cancer cells. Chemical Communications, 2012, 48(61): 7640–7642

    Article  CAS  Google Scholar 

  61. Gao L, Fei J, Zhao J, et al. Hypocrellin-loaded gold nanocages with high two-photon efficiency for photothermal/photodynamic cancer therapy in vitro. ACS Nano, 2012, 6(9): 8030–8040

    Article  CAS  Google Scholar 

  62. Hu Y, Huang S, Zhao X, et al. Preparation of photothermal responsive and ROS generative gold nanocages for cancer therapy. Chemical Engineering Journal, 2021, 421: 129744

    Article  CAS  Google Scholar 

  63. Wang S, Song Y, Cao K, et al. Photothermal therapy mediated by gold nanocages composed of anti-PDL1 and galunisertib for improved synergistic immunotherapy in colorectal cancer. Acta Biomaterialia, 2021 (in press)

  64. Pakravan A, Azizi M, Rahimi F, et al. Comparative effect of thermo/pH-responsive polymer-coated gold nanocages and hollow nanostars on chemo-photothermal therapy of breast cancer cells. Cancer Nanotechnology, 2021, 12(1): 19

    Article  CAS  Google Scholar 

  65. Sun M, Duan Y, Ma Y, et al. Cancer cell-erythrocyte hybrid membrane coated gold nanocages for near infrared light-activated photothermal/radio/chemotherapy of breast cancer. International Journal of Nanomedicine, 2020, 15: 6749–6760

    Article  CAS  Google Scholar 

  66. Battogtokh G, Gotov O, Kang J H, et al. Glycol chitosan-coated near-infrared photosensitizer-encapsulated gold nanocages for glioblastoma phototherapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 18: 315–325

    Article  CAS  Google Scholar 

  67. Feng Y, Cheng Y, Chang Y, et al. Time-staggered delivery of erlotinib and doxorubicin by gold nanocages with two smart polymers for reprogrammable release and synergistic with photothermal therapy. Biomaterials, 2019, 217: 119327

    Article  CAS  Google Scholar 

  68. Yu Y, Zhang Z, Wang Y, et al. A new NIR-triggered doxorubicin and photosensitizer indocyanine green co-delivery system for enhanced multidrug resistant cancer treatment through simultaneous chemo/photothermal/photodynamic therapy. Acta Biomaterialia, 2017, 59: 170–180

    Article  CAS  Google Scholar 

  69. Srivatsan A, Jenkins S V, Jeon M, et al. Gold nanocage-photosensitizer conjugates for dual-modal image-guided enhanced photodynamic therapy. Theranostics, 2014, 4(2): 163–174

    Article  Google Scholar 

  70. Farahavar G, Abolmaali S S, Nejatollahi F, et al. Single-chain antibody-decorated Au nanocages@liposomal layer nanoprobes for targeted SERS imaging and remote-controlled photothermal therapy of melanoma cancer cells. Materials Science and Engineering C, 2021, 124: 112086

    Article  CAS  Google Scholar 

  71. Xu X, Chong Y, Liu X, et al. Multifunctional nanotheranostic gold nanocages for photoacoustic imaging guided radio/photodynamic/photothermal synergistic therapy. Acta Biomaterialia, 2019, 84: 328–338

    Article  CAS  Google Scholar 

  72. Fang X, Lui K H, Li S, et al. Multifunctional nanotheranostic gold nanocage/selenium core-shell for PAI-guided chemophotothermal synergistic therapy in vivo. International Journal of Nanomedicine, 2020, 15: 10271–1

    Article  CAS  Google Scholar 

  73. Jiang H. Photoacoustic Tomography. CRC Press, 2018

  74. Upputuri P K, Pramanik M. Recent advances toward preclinical and clinical translation of photoacoustic tomography: A review. Journal of Biomedical Optics, 2016, 22(4): 041006

    Article  Google Scholar 

  75. Wang L V, Yao J. A practical guide to photoacoustic tomography in the life sciences. Nature Methods, 2016, 13(8): 627–638

    Article  CAS  Google Scholar 

  76. Li W, Brown P K, Wang L V, et al. Gold nanocages as contrast agents for photoacoustic imaging. Contrast Media & Molecular Imaging, 2011, 6(5): 370–377

    Article  CAS  Google Scholar 

  77. Bhandari A, Xia E, Wang Y, et al. Impact of sentinel lymph node biopsy in newly diagnosed invasive breast cancer patients with suspicious node: A comparative accuracy survey of fine-needle aspiration biopsy versus core-needle biopsy. American Journal of Translational Research, 2018, 10(6): 1860–1873

    CAS  Google Scholar 

  78. Spaide R F, Fujimoto J G, Waheed N K, et al. Optical coherence tomography angiography. Progress in Retinal and Eye Research, 2018, 64: 1–55

    Article  Google Scholar 

  79. Tan A C S, Tan G S, Denniston A K, et al. An overview of the clinical applications of optical coherence tomography angiography. Eye, 2018, 32(2): 262–286

    Article  CAS  Google Scholar 

  80. Li M, Landahl S, East A R, et al. Optical coherence tomography — A review of the opportunities and challenges for postharvest quality evaluation. Postharvest Biology and Technology, 2019, 150: 9–18

    Article  Google Scholar 

  81. Au L, Zhang Q, Cobley C M, et al. Quantifying the cellular uptake of antibody-conjugated Au nanocages by two-photon microscopy and inductively coupled plasma mass spectrometry. ACS Nano, 2010, 4(1): 35–42

    Article  CAS  Google Scholar 

  82. Jin C, Liang F, Wang J, et al. Rational design of cyclometalated iridium(III) complexes for three-photon phosphorescence bio-imaging. Angewandte Chemie International Edition, 2020, 59 (37): 15987–15991

    Article  CAS  Google Scholar 

  83. Pang B, Yang X, Xia Y. Putting gold nanocages to work for optical imaging, controlled release and cancer theranostics. Nanomedicine, 2016, 11(13): 1715–1728

    Article  CAS  Google Scholar 

  84. Chen Y, Zhang Y, Liang W, et al. Gold nanocages as contrast agents for two-photon luminescence endomicroscopy imaging. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8 (8): 1267–1270

    Article  CAS  Google Scholar 

  85. Govindaraju S, Yun K. Synthesis of gold nanomaterials and their cancer-related biomedical applications: An update. 3Biotech, 2018, 8: 113

    Google Scholar 

  86. Wu Y, Leng Y, Xi J, et al. Scanning all-fiber-optic endomicroscopy system for 3D nonlinear optical imaging of biological tissues. Optics Express, 2009, 17(10): 7907–7915

    Article  CAS  Google Scholar 

  87. Tong L, Cobley C M, Chen J, et al. Bright three-photon luminescence from gold/silver alloyed nanostructures for bioimaging with negligible photothermal toxicity. Angewandte Chemie International Edition, 2010, 49(20): 3485–3488

    Article  CAS  Google Scholar 

  88. Auner G W, Koya S K, Huang C, et al. Applications of Raman spectroscopy in cancer diagnosis. Cancer and Metastasis Reviews, 2018, 37(4): 691–717

    Article  CAS  Google Scholar 

  89. Zong C, Xu M, Xu L J, et al. Surface-enhanced Raman spectroscopy for bioanalysis: Reliability and challenges. Chemical Reviews, 2018, 118(10): 4946–4980

    Article  CAS  Google Scholar 

  90. Bruzas I, Lum W, Gorunmez Z, et al. Advances in surface-enhanced Raman spectroscopy (SERS) substrates for lipid and protein characterization: Sensing and beyond. The Analyst, 2018, 143(17): 3990–4008

    Article  CAS  Google Scholar 

  91. Ding S Y, You E M, Tian Z Q, et al. Electromagnetic theories of surface-enhanced Raman spectroscopy. Chemical Society Reviews, 2017, 46(13): 4042–4076

    Article  CAS  Google Scholar 

  92. Indrasekara A S, Paladini B J, Naczynski D J, et al. Dimeric gold nanoparticle assemblies as tags for SERS-based cancer detection. Advanced Healthcare Materials, 2013, 2(10): 1370–1376

    Article  CAS  Google Scholar 

  93. Jorgenson E, Ianoul A. Biofunctionalization of plasmonic nanoparticles with short peptides monitored by SERS. The Journal of Physical Chemistry B, 2017, 121(5): 967–974

    Article  CAS  Google Scholar 

  94. Cao X, Shan Y, Tan L, et al. Hollow Au nanoflower substrates for identification and discrimination of the differentiation of bone marrow mesenchymal stem cells by surface-enhanced Raman spectroscopy. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2017, 5(30): 5983–5995

    Article  CAS  Google Scholar 

  95. Sun D, Xu W, Liang C, et al. Smart surface-enhanced resonance Raman scattering nanoprobe for monitoring cellular alkaline phosphatase activity during osteogenic differentiation. ACS Sensors, 2020, 5(6): 1758–1767

    Article  CAS  Google Scholar 

  96. Huang X, Jain P K, El-Sayed I H, et al. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers in Medical Science, 2008, 23(3): 217–228

    Article  Google Scholar 

  97. Chen Y, Li L, Chen W, et al. Near-infrared small molecular fluorescent dyes for photothermal therapy. Chinese Chemical Letters, 2019, 30(7): 1353–1360

    Article  CAS  Google Scholar 

  98. Song X, Chen Q, Liu Z. Recent advances in the development of organic photothermal nano-agents. Nano Research, 2015, 8(2): 340–354

    Article  CAS  Google Scholar 

  99. Wang Y, Black K C, Luehmann H, et al. Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment. ACS Nano, 2013, 7(3): 2068–2077

    Article  CAS  Google Scholar 

  100. Vines J B, Yoon J H, Ryu N E, et al. Gold nanoparticles for photothermal cancer therapy. Frontiers in Chemistry, 2019, 7: 167–183

    Article  CAS  Google Scholar 

  101. Chen J, Glaus C, Laforest R, et al. Gold nanocages as photothermal transducers for cancer treatment. Small, 2010, 6 (7): 811–817

    Article  CAS  Google Scholar 

  102. Peer D, Karp J M, Hong S, et al. Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2007, 2 (12): 751–760

    Article  CAS  Google Scholar 

  103. Sun Y, Peng Y, Chen Y, et al. Application of artificial neural networks in the design of controlled release drug delivery systems. Advanced Drug Delivery Reviews, 2003, 55(9): 1201–1215

    Article  CAS  Google Scholar 

  104. Cui J, Yan Y, Wang Y, et al. Templated assembly of pH-labile polymer-drug particles for intracellular drug delivery. Advanced Functional Materials, 2012, 22(22): 4718–4723

    Article  CAS  Google Scholar 

  105. Wang Y, Yan Y, Cui J, et al. Encapsulation of water-insoluble drugs in polymer capsules prepared using mesoporous silica templates for intracellular drug delivery. Advanced Materials, 2010, 22(38): 4293–4297

    Article  CAS  Google Scholar 

  106. Yavuz M S, Cheng Y, Chen J, et al. Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nature Materials, 2009, 8(12): 935–939

    Article  CAS  Google Scholar 

  107. Li H, Li H, Yu W, et al. PEGylated hyaluronidase/NIR induced drug controlled release system for synergetic chemo-photothermal therapy of hepatocellular carcinoma. European Journal of Pharmaceutical Sciences, 2019, 133: 127–136

    Article  CAS  Google Scholar 

  108. Her S, Jaffray D A, Allen C. Gold nanoparticles for applications in cancer radiotherapy: Mechanisms and recent advancements. Advanced Drug Delivery Reviews, 2017, 109: 84–101

    Article  CAS  Google Scholar 

  109. Hosnedlova B, Kepinska M, Fernandez C, et al. Carbon nanomaterials for targeted cancer therapy drugs: A critical review. Chemical Record, 2019, 19(2–3): 502–522

    Article  CAS  Google Scholar 

  110. Pillai G. Nanotechnology toward treating cancer: A comprehensive review. In: Mohapatra S S, Ranjan S, Dasgupta N, et al., eds. Applications of Targeted Nano Drugs and Delivery Systems: Nanoscience and Nanotechnology in Drug Delivery. Micro & Nano Technologies, 2019, 221–256

  111. Pandya T, Patel K K, Pathak R, et al. Liposomal formulations in cancer therapy: Passive versus active targeting. Asian Journal of Pharmaceutical Research and Development, 2019, 7(2): 35–38

    Article  CAS  Google Scholar 

  112. Behera A, Padhi S. Passive and active targeting strategies for the delivery of the camptothecin anticancer drug: A review. Environmental Chemistry Letters, 2020, 18(5): 1557–1567

    Article  CAS  Google Scholar 

  113. Siminzar P, Omidi Y, Golchin A, et al. Targeted delivery of doxorubicin by magnetic mesoporous silica nanoparticles armed with mucin-1 aptamer. Journal of Drug Targeting, 2020, 28(1): 92–101

    Article  CAS  Google Scholar 

  114. Kon I I, Zyubin A Y, Seteikin A Y, et al. FTDT numerical calculatons of local plasmonic fields for multilayer gold nanoparticles-agents for theranostics. In: Andrews D L, Bain A J, Kauranen M, et al., eds. Nanophotonics VIII. Proceedings of SPIE, 2021, 11345: 113452L

  115. Parida S, Maiti C, Rajesh Y, et al. Gold nanorod embedded reduction responsive block copolymer micelle-triggered drug delivery combined with photothermal ablation for targeted cancer therapy. Biochimica et Biophysica Acta: General Subjects, 2017, 1861(1 Pt A): 3039–3052

    Article  CAS  Google Scholar 

  116. Yang M, Liu Y, Hou W, et al. Mitomycin C-treated human-induced pluripotent stem cells as a safe delivery system of gold nanorods for targeted photothermal therapy of gastric cancer. Nanoscale, 2017, 9(1): 334–340

    Article  CAS  Google Scholar 

  117. Nima Z A, Alwbari A M, Dantuluri V, et al. Targeting nano drug delivery to cancer cells using tunable, multi-layer, silver-decorated gold nanorods. Journal of Applied Toxicology, 2017, 37(12): 1370–1378

    Article  CAS  Google Scholar 

  118. Huang S, Duan S, Wang J, et al. Folic-acid-mediated functionalized gold nanocages for targeted delivery of anti-miR-181b in combination of gene therapy and photothermal therapy against hepatocellular carcinoma. Advanced Functional Materials, 2016, 26(15): 2532–2544

    Article  CAS  Google Scholar 

  119. Kumar S S D, Mahesh A, Antoniraj M G, et al. Cellular imaging and folate receptor targeting delivery of gum kondagogu capped gold nanoparticles in cancer cells. International Journal of Biological Macromolecules, 2018, 109: 220–230

    Article  CAS  Google Scholar 

  120. Burks S R, Ziadloo A, Hancock H A, et al. Investigation of cellular and molecular responses to pulsed focused ultrasound in a mouse model. PLoS One, 2011, 6(9): e24730

    Article  CAS  Google Scholar 

  121. Eck W, Craig G, Sigdel A, et al. PEGylated gold nanoparticles conjugated to monoclonal F19 antibodies as targeted labeling agents for human pancreatic carcinoma tissue. ACS Nano, 2008, 2(11): 2263–2272

    Article  CAS  Google Scholar 

  122. Samia A C, Chen X, Burda C. Semiconductor quantum dots for photodynamic therapy. Journal of the American Chemical Society, 2003, 125(51): 15736–15737

    Article  CAS  Google Scholar 

  123. Wu G, Mikhailovsky A, Khant H A, et al. Remotely triggered liposome release by near-infrared light absorption via hollow gold nanoshells. Journal of the American Chemical Society, 2008, 130(26): 8175–8177

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the Shiraz University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samira Sadat Abolmaali.

Additional information

Disclosure of potential conflict of interest

The authors declare no conflict of interest in this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alimardani, V., Farahavar, G., Salehi, S. et al. Gold nanocages in cancer diagnosis, therapy, and theranostics: A brief review. Front. Mater. Sci. 15, 494–511 (2021). https://doi.org/10.1007/s11706-021-0569-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-021-0569-1

Keywords

Navigation