Skip to main content
Log in

Facile synthesis of asymmetric patchy Janus Ag/Cu particles and study of their antifungal activity

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Asymmetric patchy Ag/Cu Janus nanoparticles (NPs) were synthesized via a “seed-mediated” approach. This is the first report of synthesis of nanometer sized metal-based Janus NPs without using complicated methods. Selective adsorption of the surfactant onto the seed NPs leads to the formation of Janus type structure. Subsequently the reduction potential of Ag+/Ag0 and Cu2+/Cu0 systems directs the formation of the “patch”. The patchy Janus NPs show significant antifungal activity towards a potent rice pathogen thus offering the prospect of future application in crop protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hodak J H, Henglein A, Giersig M, et al. Laser-induced inter-diffusion in AuAg core—shell nanoparticles. The Journal of Physical Chemistry B, 2000, 104(49): 11708–11718

    CAS  Google Scholar 

  2. Fan F R, Liu D Y, Wu Y F, et al. Epitaxial growth of heterogeneous metal nanocrystals: from gold nano-octahedra to palladium and silver nanocubes. Journal of the American Chemical Society, 2008, 130(22): 6949–6951

    CAS  Google Scholar 

  3. Zhang H T, Ding J, Chow G M, et al. Engineering magnetic properties of Ni nanoparticles by non-magnetic cores. Chemistry of Materials, 2009, 21(21): 5222–5228

    CAS  Google Scholar 

  4. Tsuji M, Miyamae N, Lim S, et al. Crystal structures and growth mechanisms of Au@Ag core—shell nanoparticles prepared by the microwave-polyol method. Crystal Growth & Design, 2006, 6(8): 1801–1807

    CAS  Google Scholar 

  5. Costi R, Saunders A E, Banin U. Colloidal hybrid nanostructures: a new type of functional materials. Angewandte Chemie International Edition, 2010, 49(29): 4878–4897

    CAS  Google Scholar 

  6. Cozzoli P D, Pellegrino T, Manna L. Synthesis, properties and perspectives of hybrid nanocrystal structures. Chemical Society Reviews, 2006, 35(11): 1195–1208

    CAS  Google Scholar 

  7. Wang C, Xu C, Zeng H, et al. Recent progress in syntheses and applications of dumbbell-like nanoparticles. Advanced Materials, 2009, 21(30): 3045–3052

    CAS  Google Scholar 

  8. Poulos T L. The Janus nature of heme. Natural Product Reports, 2007, 24(3): 504–510

    CAS  Google Scholar 

  9. Szilvay G R, Paananen A, Laurikainen K, et al. Self-assembled hydrophobin protein films at the air—water interface: structural analysis and molecular engineering. Biochemistry, 2007, 46(9): 2345–2354

    CAS  Google Scholar 

  10. Whiteford J R, Spanu P D. Hydrophobins and the interactions between fungi and plants. Molecular Plant Pathology, 2002, 3(5): 391–400

    CAS  Google Scholar 

  11. Du J, O’Reilly R K. Anisotropic particles with patchy, multi-compartment and Janus architectures: preparation and application. Chemical Society Reviews, 2011, 40(5): 2402–2416

    CAS  Google Scholar 

  12. Nisisako T, Torii T, Takahashi T, et al. Synthesis of monodisperse bicolored Janus particles with electrical anisotropy using a microfluidic co-flow system. Advanced Materials, 2006, 18(9): 1152–1156

    CAS  Google Scholar 

  13. Walther A, Hoffmann M, Müller A H. Emulsion polymerization using Janus particles as stabilizers. Angewandte Chemie International Edition, 2008, 47(4): 711–714

    CAS  Google Scholar 

  14. Yoshida M, Lahann J. Smart nanomaterials. ACS Nano, 2008, 2(6): 1101–1107

    CAS  Google Scholar 

  15. McConnell M D, Kraeutler M J, Yang S, et al. Patchy and multiregion Janus particles with tunable optical properties. Nano Letters, 2010, 10(2): 603–609

    CAS  Google Scholar 

  16. Glotzer S C, Solomon M J. Anisotropy of building blocks and their assembly into complex structures. Nature Materials, 2007, 6(8): 557–562

    Google Scholar 

  17. Gegenbuker T, Krekhova M, Schobel J, et al. “Patchy” carbon nanotubes as efficient compatibilizers for polymer blends. ACS Macro Letters, 2016, 5(3): 306–310

    Google Scholar 

  18. Li S, Zhang L, Chen X, et al. Selective growth synthesis of ternary Janus nanoparticles for imaging-guided synergistic chemo- and photothermal therapy in the second NIR window. ACS Applied Materials & Interfaces, 2018, 10(28): 24137–24148

    CAS  Google Scholar 

  19. Walther A, Müller A H E. Janus particles: synthesis, self-assembly, physical properties, and applications. Chemical Reviews, 2013, 113(7): 5194–5261

    CAS  Google Scholar 

  20. Carbone L, Cozzoli P D. Colloidal heterostructured nanocrystals: synthesis and growth mechanisms. Nano Today, 2010, 5(5): 449–493

    CAS  Google Scholar 

  21. Choi J, Zhao Y, Zhang D, et al. Patterned fluorescent particles as nanoprobes for the investigation of molecular interactions. Nano Letters, 2003, 3(8): 995–1000

    CAS  Google Scholar 

  22. Anker J N, Kopelman R. Magnetically modulated optical nanoprobes. Applied Physics Letters, 2003, 82(7): 1102–1104

    CAS  Google Scholar 

  23. Hong L, Jiang S, Granick S. Simple method to produce Janus colloidal particles in large quantity. Langmuir, 2006, 22(23): 9495–9499

    CAS  Google Scholar 

  24. Koo H Y, Yi D K, Yoo S J, et al. A snowman-like array of colloidal dimers for antireflecting surfaces. Advanced Materials, 2004, 16(3): 274–277

    CAS  Google Scholar 

  25. Roh K H, Martin D C, Lahann J. Biphasic Janus particles with nanoscale anisotropy. Nature Materials, 2005, 4(10): 759–763

    CAS  Google Scholar 

  26. Wurm F, König H M, Hilf S, et al. Janus micelles induced by olefin metathesis. Journal of the American Chemical Society, 2008, 130(18): 5876–5877

    CAS  Google Scholar 

  27. Zhang J, Wang X J, Wu D X, et al. Bioconjugated Janus particles prepared by in situ click chemistry. Chemistry of Materials, 2009, 21(17): 4012–4018

    CAS  Google Scholar 

  28. de Gennes P G. Soft matter. Reviews of Modern Physics, 1992, 64(3): 645

    Google Scholar 

  29. Reculusa S, Mingotaud C, Bourgeat-Lami E, et al. Synthesis of daisy-shaped and multipod-like silica/polystyrene nanocomposites. Nano Letters, 2004, 4(9): 1677–1682

    CAS  Google Scholar 

  30. Wurm F, Kilbinger A F M. Polymeric Janus particles. Angewandte Chemie International Edition, 2009, 48(45): 8412–8421

    CAS  Google Scholar 

  31. Perro A, Reculusa S, Ravaine S, et al. Design and synthesis of Janus micro- and nanoparticle. Journal of Materials Chemistry, 2005, 15(35–36): 3745–3760

    CAS  Google Scholar 

  32. Lattuada M, Hatton T A. Synthesis, properties and applications of Janus nanoparticles. Nano Today, 2011, 6(3): 286–308

    CAS  Google Scholar 

  33. Walther A, Müller A H E. Janus particles. Soft Matter, 2008, 4(4): 663–668

    CAS  Google Scholar 

  34. Loget G, Kuhn A. Bulk synthesis of Janus objects and asymmetric patchy particles. Journal of Materials Chemistry, 2012, 22(31): 15457–15474

    CAS  Google Scholar 

  35. Chen T, Chen G, Xing S, et al. Scalable routes to Janus Au—SiO2 and ternary Ag—Au—SiO2 nanoparticles. Chemistry of Materials, 2010, 22(13): 3826–3828

    CAS  Google Scholar 

  36. Sotiriou G A, Hirt A M, Lozach P Y, et al. Hybrid, silica-coated, Janus-like plasmonic-magnetic nanoparticles. Chemistry of Materials, 2011, 23(7): 1985–1992

    CAS  Google Scholar 

  37. Anderson N A. The genetics and pathology of Rhizoctonia solani. Annual Review of Phytopathology, 1982, 20(1): 329–347

    Google Scholar 

  38. Vilgalys R, Cubeta M A. Molecular systematics and population biology of Rhizoctonia. Annual Review of Phytopathology, 1994, 32(1): 135–155

    Google Scholar 

  39. Willocquet L, Elazegui F A, Castilla N, et al. Research priorities for rice pest management in tropical Asia: a simulation analysis of yield losses and management efficiencies. Phytopathology, 2004, 94(7): 672–682

    Google Scholar 

  40. Lee F N, Rush M C. Rice sheath blight: A major rice disease. Plant Disease, 1983, 67(7): 829–832

    Google Scholar 

  41. Webster R K, Gunnell P S, eds. Compendium of Rice Disease. St. Paul, Minnesota: The American Phytopathological Society Press, 1992

    Google Scholar 

  42. Gangopadyay S, Chakrabarti N K. Sheath blight of rice. Review of Plant Pathology, 1982, 61: 451–460

    Google Scholar 

  43. De S, Mandal S. Surfactant-assisted shape control of copper nanostructures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 421: 72–83

    CAS  Google Scholar 

  44. Mandal S, De S. Catalytic and fluorescence studies with copper nanoparticles synthesized in polysorbates of varying hydrophobicity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 467: 233–250

    CAS  Google Scholar 

  45. Tsuji M, Hikino S, Tanabe R, et al. Syntheses of Ag/Cu alloy and Ag/Cu alloy core Cu shell nanoparticles using a polyol method. CrystEngComm, 2010, 12(11): 3900–3908

    CAS  Google Scholar 

  46. Tsuji M, Hikino S, Tanabe R, et al. Synthesis of bicompartmental Ag/Cu nanoparticles using a two-step polyol process. Chemistry Letters, 2009, 38(8): 860–861

    CAS  Google Scholar 

  47. Glaser N, Adams D J, Böker A, et al. Janus particles at liquid—liquid interfaces. Langmuir, 2006, 22(12): 5227–5229

    CAS  Google Scholar 

  48. Howse J R, Jones R A L, Ryan A J, et al. Self-motile colloidal particles: from directed propulsion to random walk. Physical Review Letters, 2007, 99(4): 048102

    Google Scholar 

Download references

Acknowledgements

S. De thanks Science and Engineering Research Board, Govt. of India, New Delhi for generous grant of the research project (File no. EMR/2014/000435) and University of Kalyani for infrastructural support. S. Sarkar acknowledges DST, India for the financial support provided through an INSPIRE Fellowship (IF160188). The authors thank Dr. A. Gayen, Dept. of Chemistry, Jadavpur University for help with the powder XRD measurements. Prof. T. K. Basu, Dept. of biochemistry, University of Kalyani is acknowledged for letting us use the DLS facility. CRF, IIT Kharagpur and Bose Institute, Kolkata are acknowledged for the TEM and SEM measurements respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swati De.

Ethics declarations

Disclosure of potential conflicts of interests The authors declare no potential conflicts of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, S., Pramanik, S., Mandal, S. et al. Facile synthesis of asymmetric patchy Janus Ag/Cu particles and study of their antifungal activity. Front. Mater. Sci. 14, 24–32 (2020). https://doi.org/10.1007/s11706-020-0496-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-020-0496-6

Keywords

Navigation