Skip to main content
Log in

Advancing oxygen separation: insights from experimental and computational analysis of La0.7Ca0.3Co0.3Fe0.6M0.1O3−δ (M = Cu, Zn) oxygen transport membranes

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, perovskite-type La0.7Ca0.3Co0.3 Fe0.6M0.1O3−δ (M = Cu, Zn) powders were synthesized using a scalable reverse co-precipitation method, presenting them as novel materials for oxygen transport membranes. The comprehensive study covered various aspects including oxygen permeability, crystal structure, conductivity, morphology, CO2 tolerance, and long-term regenerative durability with a focus on phase structure and composition. The membrane La0.7Ca0.3Co0.3Fe0.6Zn0.1O3δ exhibited high oxygen permeation fluxes, reaching up to 0.88 and 0.64 mL·min−1cm−2 under air/He and air/CO2 gradients at 1173 K, respectively. After 1600 h of CO2 exposure, the perovskite structure remained intact, showcasing superior CO2 resistance. A combination of first principles simulations and experimental measurements was employed to deepen the understanding of Cu/Zn substitution effects on the structure, oxygen vacancy formation, and transport behavior of the membranes. These findings underscore the potential of this highly CO2-tolerant membrane for applications in high-temperature oxygen separation. The enhanced insights into the oxygen transport mechanism contribute to the advancement of next-generation membrane materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen G, Feldhoff A, Weidenkaff A, Li C, Liu S, Zhu X, Sunarso J, Huang K, Wu X, Ghoniem A F, et al. Roadmap for sustainable mixed ionic-electronic conducting membranes. Advanced Functional Materials, 2022, 32(6): 2105702

    Article  CAS  Google Scholar 

  2. Zou X, Lu Q, Zhong Y, Liao K, Zhou W, Shao Z. Flexible, flame-resistant, and dendrite-impermeable gel-polymer electrolyte for Li−O2/air batteries workable under hurdle conditions. Small, 2018, 14(34): e1801798

    Article  PubMed  Google Scholar 

  3. Du M, Liao K, Lu Q, Shao Z. Recent advances in the interface engineering of solid-state Li-ion batteries with artificial buffer layers: challenges, materials, construction, and characterization. Energy & Environmental Science, 2019, 12(6): 1780–1804

    Article  CAS  Google Scholar 

  4. Guo J, Tang W, Xiong X, Liu H, Wang T, Wu Y, Cheng X. Localized high-concentration electrolytes for lithium metal batteries: progress and prospect. Frontiers of Chemical Science and Engineering, 2023, 17(10): 1354–1371

    Article  CAS  Google Scholar 

  5. Ren J, He Y, Sun H, Zhang R, Li J, Ma W, Liu Z, Li J, Du X, Hao X. Construction of nitrogen-doped carbon cladding LiMn2O4 film electrode with enhanced stability for electrochemically selective extraction of lithium ions. Frontiers of Chemical Science and Engineering, 2023, 17(12): 2050–2060

    Article  CAS  Google Scholar 

  6. Yu X, Chen G, Widenmeyer M, Kinski I, Liu X, Kunz U, Schüpfer D, Molina-Luna L, Tu X, Homm G, et al. Catalytic recycling of medical plastic wastes over La0.6Ca0.4Co1−xFexO3−δ pre-catalysts for co-production of H2 and high-value added carbon nanomaterials. Applied Catalysis B: Environmental, 2023, 334: 122838

    Article  CAS  Google Scholar 

  7. Amaya-Dueñas D M, Chen G, Weidenkaff A, Sata N, Han F, Biswas I, Costa R, Friedrich K A. A-site deficient chromite with in situ Ni exsolution as a fuel electrode for solid oxide cells (SOCs). Journal of Materials Chemistry A, 2021, 9(9): 5685–5701

    Article  Google Scholar 

  8. Wang S, Xiao P, Yang J, Carabineiro S A C, Wiśniewski M, Zhu J, Liu X. Catalytic combustion of volatile organic compounds using perovskite oxides catalysts—a review. Frontiers of Chemical Science and Engineering, 2023, 17(11): 1649–1676

    Article  Google Scholar 

  9. Zhu X, Yang W. Microstructural and interfacial designs of oxygen-permeable membranes for oxygen separation and reaction-separation coupling. Advanced Materials, 2019, 31(50): e1902547

    Article  PubMed  Google Scholar 

  10. Chen G, Widenmeyer M, Yu X, Han N, Tan X, Homm G, Liu S, Weidenkaff A. Perspectives on achievements and challenges of oxygen transport dual-functional membrane reactors. Journal of the American Ceramic Society, 2024, 107(3): 1490–1504

    Article  CAS  Google Scholar 

  11. Zhang C, Sunarso J, Liu S. Designing CO2-resistant oxygen-selective mixed ionic-electronic conducting membranes: guidelines, recent advances, and forward directions. Chemical Society Reviews, 2017, 46(10): 2941–3005

    Article  CAS  PubMed  Google Scholar 

  12. Geffroy P M, Blond E, Richet N, Chartier T. Understanding and identifying the oxygen transport mechanisms through a mixed-conductor membrane. Chemical Engineering Science, 2017, 162: 245–261

    Article  CAS  Google Scholar 

  13. Chen G, Widenmeyer M, Tang B, Kaeswurm L, Wang L, Feldhoff A, Weidenkaff A. A CO and CO2 tolerating (La0.9Ca0.1)2(Ni0.75Cu0.25)O4+δ Ruddlesden-Popper membrane for oxygen separation. Frontiers of Chemical Science and Engineering, 2020, 14(3): 405–414

    Article  CAS  Google Scholar 

  14. Bai W, Feng J, Luo C, Zhang P, Wang H, Yang Y, Zhao Y, Fan H A. A comprehensive review on oxygen transport membranes: development history, current status, and future directions. International Journal of Hydrogen Energy, 2021, 46(73): 36257–36290

    Article  CAS  Google Scholar 

  15. Tan X, Alsaiari M, Shen Z, Asif S, Harraz F A, Šljukić B, Santos D M F, Zhang W, Bokhari A, Han N. Rational design of mixed ionic-electronic conducting membranes for oxygen transport. Chemosphere, 2022, 305: 135483

    Article  CAS  PubMed  Google Scholar 

  16. Alam M S, Kagomiya I, Kakimoto K. Tailoring the oxygen permeability of BaCo0.4Fe0.4Y0.2−xAxO3−δ (x = 0, 0.1; A: Zr, Mg, Zn) cubic perovskite. Ceramics International, 2023, 49(7): 11368–11377

    Article  CAS  Google Scholar 

  17. Zhao Z, Chen G, Escobar Cano G, Kißling P A, Stölting O, Breidenstein B, Polarz S, Bigall N C, Weidenkaff A, Feldhoff A. Multiplying oxygen permeability of a ruddlesden-popper oxide by orientation control via magnets. Angewandte Chemie International Edition, 2024, 63(8): e202312473

    Article  CAS  PubMed  Google Scholar 

  18. Johanning M, Widenmeyer M, Escobar Cano G, Zeller V, Klemenz S, Chen G, Feldhoff A, Weidenkaff A. Recycling process development with integrated life cycle assessment—a case study on oxygen transport membrane material. Green Chemistry, 2023, 25(12): 4735–4749

    Article  CAS  Google Scholar 

  19. Chen G, Buck F, Kistner I, Widenmeyer M, Schiestel T, Schulz A, Walker M, Weidenkaff A. A novel plasma-assisted hollow fiber membrane concept for efficiently separating oxygen from CO in a CO2 plasma. Chemical Engineering Journal, 2020, 392: 123699

    Article  CAS  Google Scholar 

  20. Chen G, Snyders R, Britun N. CO2 conversion using catalyst-free and catalyst-assisted plasma-processes: recent progress and understanding. Journal of CO2 Utilization, 2021, 49: 101557

    Article  CAS  Google Scholar 

  21. Widenmeyer M, Wiegers K S, Chen G, Yoon S, Feldhoff A, Weidenkaff A. Engineering of oxygen pathways for better oxygen permeability in Cr-substituted Ba2In2O5 membranes. Journal of Membrane Science, 2020, 595: 117558

    Article  CAS  Google Scholar 

  22. Arratibel Plazaola A, Cruellas Labella A, Liu Y, Badiola Porras N, Pacheco Tanaka D A, Sint Annaland M V, Gallucci F. Mixed ionic-electronic conducting membranes (MIEC) for their application in membrane reactors: a review. Processes, 2019, 7(3): 128

    Article  Google Scholar 

  23. Wang H, Tablet C, Feldhoff A, Caro J. Investigation of phase structure, sintering, and permeability of perovskite-type Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes. Journal of Membrane Science, 2005, 262(1–2): 20–26

    Article  CAS  Google Scholar 

  24. Chen G, Tang B, Widenmeyer M, Wang L, Feldhoff A, Weidenkaff A. Novel CO2-tolerant dual-phase \({\rm{C}}{{\rm{e}}_{0.9}}{\Pr _{0.1}}{{\rm{O}}_{2 - \delta }} - {\rm{L}}{{\rm{a}}_{0.5}}{\rm{S}}{{\rm{r}}_{0.5}}{\rm{F}}{{\rm{e}}_{0.9}}{\rm{C}}{{\rm{u}}_{0.1}}{{\rm{O}}_{3 - \delta }}\) membranes with high oxygen permeability. Journal of Membrane Science, 2020, 595: 117530

    Article  CAS  Google Scholar 

  25. Chen G, Zhao Z, Widenmeyer M, Frömling T, Hellmann T, Yan R, Qu F, Homm G, Hofmann J P, Feldhoff A, et al. A comprehensive comparative study of CO2-resistance and oxygen permeability of 60 wt % Ce0.8M0.2O2−δ (M = La, Pr, Nd, Sm, Gd)-40 wt % La0.5Sr0.5Fe0.8Cu0.2O3−δ dual-phase membranes. Journal of Membrane Science, 2021, 639: 119783

    Article  CAS  Google Scholar 

  26. Kiebach R, Pirou S, Martinez Aguilera L, Haugen A B, Kaiser A, Hendriksen P V, Balaguer M, García-Fayos J, Serra J M, Schulze-Küppers F, et al. A review on dual-phase oxygen transport membranes: from fundamentals to commercial deployment. Journal of Materials Chemistry A, 2022, 10(5): 2152–2195

    Article  CAS  Google Scholar 

  27. Luo H, Efimov K, Jiang H, Feldhoff A, Wang H, Caro J. CO2-stable and cobalt-free dual-phase membrane for oxygen separation. Angewandte Chemie International Edition, 2011, 50(3): 759–763

    Article  CAS  PubMed  Google Scholar 

  28. Li C, Song J, Zhang S, Tan X, Meng X, Sunarso J, Liu S. SDC-SCFZ dual-phase ceramics: structure, electrical conductivity, thermal expansion, and O2 permeability. Journal of the American Ceramic Society, 2021, 104(5): 2268–2284

    Article  CAS  Google Scholar 

  29. Wang S, Shi L, Xie Z, He Y, Yan D, Li M R, Caro J, Luo H. High-flux dual-phase percolation membrane for oxygen separation. Journal of the European Ceramic Society, 2019, 39(15): 4882–4890

    Article  CAS  Google Scholar 

  30. Huang Y, Zhang C, Wang X, Li D, Zeng L, He Y, Yu P, Luo H. High CO2 resistance of indium-doped cobalt-free 60wt% Ce0.9Pr0.1O2−δ-40wt%Pr0.6Sr0.4Fe1−xInxO3−δ oxygen transport membranes. Ceramics International, 2022, 48(1): 415–426

    Article  CAS  Google Scholar 

  31. Wang X, Huang Y, Li D, Zeng L, He Y, Boubeche M, Luo H. High oxygen permeation flux of cobalt-free Cu-based ceramic dual-phase membranes. Journal of Membrane Science, 2021, 633: 119403

    Article  CAS  Google Scholar 

  32. Zhu X, Liu H, Cong Y, Yang W. Novel dual-phase membranes for CO2 capture via an oxyfuel route. Chemical Communications, 2012, 48(2): 251–253

    Article  CAS  PubMed  Google Scholar 

  33. Zhang S, Yeo J Y J, Li C, Meng X, Yang N, Sunarso J, Liu S. Oxygen permeation simulation of La0.8Ca0.2Fe0.95O3−δ-Ag hollow fiber membrane at different modes and flow configurations. AIChE Journal, 2022, 68(2): e17508

    Article  CAS  Google Scholar 

  34. Chen G, Liu W, Widenmeyer M, Ying P, Dou M, Xie W, Bubeck C, Wang L, Fyta M, Feldhoff A, et al. High flux and CO2-resistance of La0.6Ca0.4Co1−xFexO3−δ oxygen-transporting membranes. Journal of Membrane Science, 2019, 590: 117082

    Article  CAS  Google Scholar 

  35. Efimov K, Klande T, Juditzki N, Feldhoff A. Ca-containing CO2-tolerant perovskite materials for oxygen separation. Journal of Membrane Science, 2012, 389: 205–215

    Article  CAS  Google Scholar 

  36. Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 1976, 32(5): 751–767

    Article  Google Scholar 

  37. Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 1996, 6(1): 15–50

    Article  CAS  Google Scholar 

  38. Blöchl P E. Projector augmented-wave method. Physical Review B: Condensed Matter, 1994, 50(24): 17953–17979

    Article  PubMed  Google Scholar 

  39. Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865–3868

    Article  CAS  PubMed  Google Scholar 

  40. Troullier N, Martins J L. Efficient pseudopotentials for plane-wave calculations. Physical Review B: Condensed Matter, 1991, 43(3): 1993–2006

    Article  CAS  PubMed  Google Scholar 

  41. Yang W H, Smolen V F, Peppas N A. Oxygen permeability coefficients of polymers for hard and soft contact lens applications. Journal of Membrane Science, 1981, 9(1–2): 53–67

    Article  CAS  Google Scholar 

  42. Wang Z, Peng R, Zhang W, Wu X, Xia C, Lu Y. Oxygen reduction and transport on the La1−xSrxCo1−yFeyO3−δ cathode in solid oxide fuel cells: a first-principles study. Journal of Materials Chemistry A, 2013, 1(41): 12932–12940

    Article  CAS  Google Scholar 

  43. Freysoldt C, Grabowski B, Hickel T, Neugebauer J, Kresse G, Janotti A, Van de Walle C G. First-principles calculations for point defects in solids. Reviews of Modern Physics, 2014, 86(1): 253–305

    Article  Google Scholar 

  44. Henkelman G, Uberuaga B P, Jónsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. Journal of Chemical Physics, 2000, 113(22): 9901–9904

    Article  CAS  Google Scholar 

  45. Jonsson H, Mills G, Jacobsen K W. Chapter 16. Nudged elastic band method for finding minimum energy paths of transitions. In: Berne B, Ciccotti G, Coker D, eds. Classical and Quantum Dynamics in Condensed Phase Simulations. New Jersey: World Scientific, 1998, 385–404

    Chapter  Google Scholar 

  46. Klein A, Albe K, Bein N, Clemens O, Creutz K A, Erhart P, Frericks M, Ghorbani E, Hofmann J P, Huang B, et al. The Fermi energy as common parameter to describe charge compensation mechanisms: a path to Fermi level engineering of oxide electroceramics. Journal of Electroceramics, 2023, 1: 1–31

    Google Scholar 

  47. Khromushin I V, Aksenova T I, Zhotabaev Z R. Mechanism of gas-solid exchange processes for some perovskites. Solid State Ionics, 2003, 162–163: 37–40

    Article  Google Scholar 

  48. Sunarso J, Baumann S, Serra J M, Meulenberg W A, Liu S, Lin Y S, Diniz da Costa J C. Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation. Journal of Membrane Science, 2008, 320(1–2): 13–41

    Article  CAS  Google Scholar 

  49. Ten Elshof J E, Bouwmeester H J M, Verweij H. Oxygen transport through La1−xSrxFeO3−δ membranes II. Permeation in air/CO, CO2 gradients. Solid State Ionics, 1996, 89(1–2): 81–92

    Article  CAS  Google Scholar 

  50. Fang W, Steinbach F, Chen C, Feldhoff A. An approach to enhance the CO2 tolerance of fluorite-perovskite dual-phase oxygen-transporting membrane. Chemistry of Materials, 2015, 27(22): 7820–7826

    Article  CAS  Google Scholar 

  51. Liang F, Luo H, Partovi K, Ravkina O, Cao Z, Liu Y, Caro J. A novel CO2-stable dual phase membrane with high oxygen permeability. Chemical Communications, 2014, 50(19): 2451–2454

    Article  CAS  PubMed  Google Scholar 

  52. Luo H, Klande T, Cao Z, Liang F, Wang H, Caro J. A CO2-stable reduction-tolerant Nd-containing dual phase membrane for oxyfuel CO2 capture. Journal of Materials Chemistry A, 2014, 2(21): 7780–7787

    Article  CAS  Google Scholar 

  53. Xue J, Liao Q, Wei Y, Li Z, Wang H. A CO2-tolerance oxygen permeable 60Ce0.9Gd0.1O2−δ–40Ba0.5Sr0.5Co0.8Fe0.2O3−δ dual phase membrane. Journal of Membrane Science, 2013, 443: 124–130

    Article  CAS  Google Scholar 

Download references

Acknowledgements

G.C., M.W., and A.W. kindly thank the Federal Ministry of Education and Research for financial support during PiCK project (Grant No. 03SFK2S3B). G.C., G.H., and A.W. kindly thank the Hydrogen performance center in Hesse for financial support during the Green materials for Green H2 project. M.W. and A.W. kindly thank the Federal Ministry of Education and Research for financial support during the NexPlas project (Grant No. 03SF0618B). The simulations presented in this work were performed on the computational resource For HLR II funded by the Ministry of Science, Research and the Arts Baden-Württemberg and the Deutsche Forschungsgemeinschaft. W.L. and M.F. are thankful for being granted access to these facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoxing Chen or Maria Fyta.

Ethics declarations

Competing interests The authors declare that they have no competing interests.

Electronic Supplementary Material

11705_2024_2421_MOESM1_ESM.pdf

Electronic Supplementary Material: Advancing oxygen separation: insights from experimental and computational analysis of La0.7Ca0.3Co0.3Fe0.6M0.1O3−δ (M = Cu, Zn) oxygen transport membranes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Liu, W., Widenmeyer, M. et al. Advancing oxygen separation: insights from experimental and computational analysis of La0.7Ca0.3Co0.3Fe0.6M0.1O3−δ (M = Cu, Zn) oxygen transport membranes. Front. Chem. Sci. Eng. 18, 62 (2024). https://doi.org/10.1007/s11705-024-2421-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11705-024-2421-5

Keywords

Navigation