Skip to main content
Log in

Single-Ni-atoms on nitrogenated humic acid based porous carbon for CO2 electroreduction

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

We proposed a facile synthesis of single-Ni-atom catalysts on low-cost porous carbon using a calcination method at the temperatures of 850–1000 °C, which were used for CO2 electrochemical reduction to CO. The porous carbon was prepared by carbonizing cheap and abundant humic acid. The structural characterizations of the as-synthesized catalysts and their electrocatalytic performances were analyzed. The results showed that the single-Ni-atom catalyst activated at 950 °C showed an optimum catalytic performance, and it reached a CO Faradaic efficiency of 91.9% with a CO partial current density of 6.9 mA·cm−2 at −0.9 V vs. reversible hydrogen electrode (RHE). Additionally, the CO Faradaic efficiency and current density of the optimum catalyst changed slightly after 8 h of continuous operation, suggesting that it possessed an excellent stability. The structure-activity relations indicate that the variation in the CO2 electrochemical reduction performance for the as-synthesized catalysts is ascribed to the combined effects of the increase in the content of pyrrolic N, the evaporation of Ni and N, the decrease in pore volume, and the change in graphitization degree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Long C, Liu X, Wan K, Jiang Y, An P, Yang C, Wu G, Wang W, Guo J, Li L, et al. Regulating reconstruction of oxide-derived Cu for electrochemical CO2 reduction toward n-propanol. Science Advances, 2023, 9(43): eadi6119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhang Y, Yu C, Tan X, Cui S, Li W, Qiu J. Recent advances in multilevel nickel-nitrogen-carbon catalysts for CO2 electroreduction to CO. New Carbon Materials, 2021, 36(1): 19–33

    Article  CAS  Google Scholar 

  3. Bo J, Li M, Zhu X, Ge Q, Han J, Wang H. Bamboo-like N-doped carbon nanotubes encapsulating M(Co, Fe)-Ni alloy for electrochemical production of syngas with potential-independent CO/H2 ratios. Frontiers of Chemical Science and Engineering, 2022, 16(4): 498–510

    Article  CAS  Google Scholar 

  4. Li J, Pršlja P, Shinagawa T, Martín Fernández A J, Krumeich F, Artyushkova K, Atanassov P, Zitolo A, Zhou Y, García-Muelas R, et al. Volcano trend in electrocatalytic CO2 reduction activity over atomically dispersed metal sites on nitrogen-doped carbon. ACS Catalysis, 2019, 9(11): 10426–10439

    Article  CAS  Google Scholar 

  5. Zhao Y, Wang X, Sang X, Zheng S, Yang B, Lei L, Hou Y, Li Z. Spin polarization strategy to deploy proton resource over atomic-level metal sites for highly selective CO2 electrolysis. Frontiers of Chemical Science and Engineering, 2022, 16(12): 1772–1781

    Article  CAS  Google Scholar 

  6. Möller T, Ju W, Bagger A, Wang X, Luo F, Thanh T N, Varela A S, Rossmeisl J, Strasser P. Efficient CO2 to CO electrolysis on solid Ni–N–C catalysts at industrial current densities. Energy & Environmental Science, 2019, 12(2): 640–647

    Article  Google Scholar 

  7. Long C, Wan K, Qiu X, Zhang X, Han J, An P, Yang Z, Li X, Guo J, Shi X, et al. Single site catalyst with enzyme-mimic microenvironment for electroreduction of CO2. Nano Research, 2022, 15(3): 1817–1823

    Article  CAS  Google Scholar 

  8. Ju W, Bagger A, Hao G P, Varela A S, Sinev I, Bon V, Roldan Cuenya B, Kaskel S, Rossmeisl J, Strasser P. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nature Communications, 2017, 8(1): 944

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sa Y J, Jung H, Shin D, Jeong H Y, Ringe S, Kim H, Hwang Y J, Joo S H. Thermal transformation of molecular Ni2+–N4 sites for enhanced CO2 electroreduction activity. ACS Catalysis, 2020, 10(19): 10920–10931

    Article  CAS  Google Scholar 

  10. Varela A S, Ranjbar Sahraie N, Steinberg J, Ju W, Oh H S, Strasser P. Metal-doped nitrogenated carbon as an efficient catalyst for direct CO2 electroreduction to CO and hydrocarbons. Angewandte Chemie International Edition, 2015, 54(37): 10758–10762

    Article  CAS  PubMed  Google Scholar 

  11. Su P, Iwase K, Nakanishi S, Hashimoto K, Kamiya K. Nickelnitrogen-modified graphene: an efficient electrocatalyst for the reduction of carbon dioxide to carbon monoxide. Small, 2016, 12(44): 6083–6089

    Article  CAS  PubMed  Google Scholar 

  12. Yan C, Li H, Ye Y, Wu H, Cai F, Si R, Xiao J, Miao S, Xie S, Yang F, et al. Coordinatively unsaturated nickel-nitrogen sites towards selective and high-rate CO2 electroreduction. Energy & Environmental Science, 2018, 11(5): 1204–1210

    Article  CAS  Google Scholar 

  13. Jiang K, Siahrostami S, Zheng T, Hu Y, Hwang S, Stavitski E, Peng Y, Dynes J, Gangisetty M, Su D, et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy & Environmental Science, 2018, 11(4): 893–903

    Article  CAS  Google Scholar 

  14. Daiyan R, Zhu X, Tong Z, Gong L, Razmjou A, Liu R S, Xia Z, Lu X, Dai L, Amal R. Transforming active sites in nickel-nitrogen-carbon catalysts for efficient electrochemical CO2 reduction to CO. Nano Energy, 2020, 78: 105213

    Article  CAS  Google Scholar 

  15. Yang X, Cheng J, Xuan X, Liu N, Liu J. Boosting defective carbon by anchoring well-defined atomically dispersed Ni–N4 sites for electrocatalytic CO2 reduction. ACS Sustainable Chemistry & Engineering, 2020, 8(28): 10536–10543

    Article  CAS  Google Scholar 

  16. Boppella R, Austeria P M, Kim Y, Kim E, Song I, Eom Y, Kumar D P, Balamurugan M, Sim E, Kim D H, et al. Pyrrolic N-stabilized monovalent Ni single-atom electrocatalyst for efficient CO2 reduction: identifying the role of pyrrolic-N and synergistic electrocatalysis. Advanced Functional Materials, 2022, 32(35): 2202351

    Article  CAS  Google Scholar 

  17. Wu J, Yadav R M, Liu M, Sharma P P, Tiwary C S, Ma L, Zou X, Zhou X D, Yakobson B I, Lou J, et al. Achieving highly efficient, selective, and stable CO2 reduction on nitrogen-doped carbon nanotubes. ACS Nano, 2015, 9(5): 5364–5371

    Article  CAS  PubMed  Google Scholar 

  18. Sharma P P, Wu J, Yadav R M, Liu M, Wright C J, Tiwary C S, Yakobson B I, Lou J, Ajayan P M, Zhou X D. Nitrogen-doped carbon nanotube arrays for high-efficiency electrochemical reduction of CO2: on the understanding of defects, defect density, and selectivity. Angewandte Chemie International Edition, 2015, 54(46): 13701–13705

    Article  CAS  PubMed  Google Scholar 

  19. Jiang K, Siahrostami S, Akey A J, Li Y, Lu Z, Lattimer J, Hu Y, Stokes C, Gangishetty M, Chen G, et al. Transition-metal single atoms in a graphene shell as active centers for highly efficient artificial photosynthesis. Chem, 2017, 3(6): 950–960

    Article  CAS  Google Scholar 

  20. Mo Z, Ajmal S, Tabish M, Kumar A, Yasin G, Zhao W. Metal-organic frameworks-based advanced catalysts for anthropogenic CO2 conversion toward sustainable future. Fuel Processing Technology, 2023, 244: 107705

    Article  CAS  Google Scholar 

  21. Zheng T, Jiang K, Ta N, Hu Y, Zeng J, Liu J, Wang H. Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst. Joule, 2019, 3(1): 265–278

    Article  CAS  Google Scholar 

  22. Wang C, Cheng T, Zhang D, Pan X. Electrochemical properties of humic acid and its novel applications: A tip of the iceberg. Science of the Total Environment, 2023, 863: 160755

    Article  CAS  PubMed  Google Scholar 

  23. Huang G, Kang W, Xing B, Chen L, Zhang C. Oxygen-rich and hierarchical porous carbons prepared from coal based humic acid for supercapacitor electrodes. Fuel Processing Technology, 2016, 142: 1–5

    Article  CAS  Google Scholar 

  24. Zhong M, Gao S, Zhou Q, Yue J, Ma F, Xu G. Characterization of char from high temperature fluidized bed coal pyrolysis in complex atmospheres. Particuology, 2016, 25: 59–67

    Article  CAS  Google Scholar 

  25. Li Y, Adli N M, Shan W, Wang M, Zachman M J, Hwang S, Tabassum H, Karakalos S, Feng Z, Wang G, et al. Atomically dispersed single Ni site catalysts for high-efficiency CO2 electroreduction at industrial-level current densities. Energy & Environmental Science, 2022, 15(5): 2108–2119

    Article  CAS  Google Scholar 

  26. Liang S, Jiang Q, Wang Q, Liu Y. Revealing the real role of nickel decorated nitrogen-doped carbon catalysts for electrochemical reduction of CO2 to CO. Advanced Energy Materials, 2021, 11(36): 2101477

    Article  CAS  Google Scholar 

  27. Li X, Bi W, Chen M, Sun Y, Ju H, Yan W, Zhu J, Wu X, Chu W, Wu C, et al. Exclusive Ni–N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction. Journal of the American Chemical Society, 2017, 139(42): 14889–14892

    Article  CAS  PubMed  Google Scholar 

  28. Sun Z, Ma T, Tao H, Fan Q, Han B. Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials. Chem, 2017, 3(4): 560–587

    Article  CAS  Google Scholar 

  29. Lu Q, Rosen J, Zhou Y, Hutchings G S, Kimmel Y C, Chen J G, Jiao F. A selective and efficient electrocatalyst for carbon dioxide reduction. Nature Communications, 2014, 5(1): 3242

    Article  PubMed  Google Scholar 

  30. Gao M R, Liang J X, Zheng Y R, Xu Y F, Jiang J, Gao Q, Li J, Yu S H. An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nature Communications, 2015, 6(1): 5982

    Article  CAS  PubMed  Google Scholar 

  31. Liu X C, Hu J, Xie R L, Fang B, Cui P. Formation mechanism of solid product produced from co-pyrolysis of Pingdingshan lean coal with organic matter in Huadian oil shale. Frontiers of Chemical Science and Engineering, 2021, 15(2): 363–372

    Article  CAS  Google Scholar 

  32. Yang M, Wang L, Li M, Hou T, Li Y. Structural stability and O2 dissociation on nitrogen-doped graphene with transition metal atoms embedded: a first-principles study. AIP Advances, 2015, 5(6): 067136

    Article  Google Scholar 

  33. Yang H B, Hung S F, Liu S, Yuan K, Miao S, Zhang L, Huang X, Wang H Y, Cai W, Chen R, et al. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nature Energy, 2018, 3(2): 140–147

    Article  CAS  Google Scholar 

  34. Brazzolotto D, Gennari M, Queyriaux N, Simmons T R, Pécaut J, Demeshko S, Meyer F, Orio M, Artero V, Duboc C. Nickel-centred proton reduction catalysis in a model of [NiFe] hydrogenase. Nature Chemistry, 2016, 8(11): 1054–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ebner S, Jaun B, Goenrich M, Thauer R K, Harmer J. Binding of coenzyme B induces a major conformational change in the active site of methyl-coenzyme M reductase. Journal of the American Chemical Society, 2010, 132(2): 567–575

    Article  CAS  PubMed  Google Scholar 

  36. Jia Q, Ramaswamy N, Hafiz H, Tylus U, Strickland K, Wu G, Barbiellini B, Bansil A, Holby E F, Zelenay P, et al. Experimental observation of redox-induced Fe–N switching behavior as a determinant role for oxygen reduction activity. ACS Nano, 2015, 9(12): 12496–12505

    Article  CAS  PubMed  Google Scholar 

  37. Yu J Q, Guo Q H, Ding L, Gong Y, Yu G S. Studying effects of solid structure evolution on gasification reactivity of coal chars by in-situ Raman spectroscopy. Fuel, 2020, 270: 117603

    Article  CAS  Google Scholar 

  38. Xiong Y K, Jin L J, Yang H, Li Y, Hu H Q. Insight into the aromatic ring structures of a low-rank coal by step-wise oxidation degradation. Fuel Processing Technology, 2020, 210: 106563

    Article  CAS  Google Scholar 

  39. Li X J, Hayashi J I, Li C Z. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal. Fuel, 2006, 85(12–13): 1700–1707

    Article  CAS  Google Scholar 

  40. Ni W, Liu Z, Zhang Y, Ma C, Deng H, Zhang S, Wang S. Electroreduction of carbon dioxide driven by the intrinsic defects in the carbon plane of a single Fe–N4 site. Advanced Materials, 2021, 33(1): e2003238

    Article  PubMed  Google Scholar 

  41. Liu X, Li G, Zhao H, Ye Y, Xie R, Zhao Z, Lei Z, Cui P. Changes in caking properties of caking bituminous coals during low-temperature pyrolysis process. Fuel, 2022, 321: 124023

    Article  CAS  Google Scholar 

  42. Lu L, Sahajwalla V, Harris D. Characteristics of chars prepared from various pulverized coals at different temperatures using drop-tube furnace. Energy & Fuels, 2000, 14(4): 869–876

    Article  CAS  Google Scholar 

  43. Liu X C, Fang B, Zhao Z G, Xie R L, Lei Z, Ling Q, Cui P. Modification mechanism of caking and coking properties of Shenmu subbituminous coal by low-temperature rapid pyrolysis treatment. Journal of Iron and Steel Research International, 2019, 26(10): 1052–1060

    Article  CAS  Google Scholar 

  44. Ghosh D, Periyasamy G, Pandey B, Pati S K. Computational studies on magnetism and the optical properties of transition metal embedded graphitic carbon nitride sheets. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2014, 2(37): 7943–7951

    Article  CAS  Google Scholar 

  45. Li S, Zhao S, Lu X, Ceccato M, Hu X M, Roldan A, Catalano J, Liu M, Skrydstrup T, Daasbjerg K. Low-valence Znδ+ (0 < δ < 2) single-atom material as highly efficient electrocatalyst for CO2 reduction. Angewandte Chemie International Edition, 2021, 60(42): 22826–22832

    Article  CAS  PubMed  Google Scholar 

  46. Jia M, Choi C, Wu T S, Ma C, Kang P, Tao H, Fan Q, Hong S, Liu S, Soo Y L, et al. Carbon-supported Ni nanoparticles for efficient CO2 electroreduction. Chemical Science, 2018, 9(47): 8775–8780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang F, Miao Z, Mu J, Zhao Y, Liang M, Meng J, Wu X, Zhou P, Zhao J, Zhuo S, et al. A Ni nanoparticles encapsulated in N-doped carbon catalyst for efficient electroreduction CO2: identification of active sites for adsorption and activation of CO2 molecules. Chemical Engineering Journal, 2022, 428: 131323

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 22308006 and 22278001), the Anhui Province Major Industrial Innovation Plan (Grant No. AHZDCYCX-LSDT2023-04), the University Synergy Innovation Program of Anhui Province (Grant No. GXXT-2022-006), the Natural Science Foundation of Anhui Provincial Education Department (Grant No. KJ2021A0407), the Youth Natural Science Foundation of Anhui University of Technology (Grant No. QZ202216), and Undergraduate Innovation and Entrepreneurship Training Program of Anhui Province (Grant No. S202310360214).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangchun Liu or Xianwen Wei.

Ethics declarations

Competing interests The authors declare that they have no competing interests.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, D., Chen, Y., Chen, Y. et al. Single-Ni-atoms on nitrogenated humic acid based porous carbon for CO2 electroreduction. Front. Chem. Sci. Eng. 18, 52 (2024). https://doi.org/10.1007/s11705-024-2411-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11705-024-2411-7

Keywords

Navigation