Skip to main content
Log in

Spin polarization strategy to deploy proton resource over atomic-level metal sites for highly selective CO2 electrolysis

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Unlocking of the extremely inert C=O bond during electrochemical CO2 reduction demands subtle regulation on a key “resource”, protons, necessary for intermediate conversion but also readily trapped in water splitting, which is still challenging for developing efficient single-atom catalysts limited by their structural simplicity usually incompetent to handle this task. Incorporation of extra functional units should be viable. Herein, a proton deployment strategy is demonstrated via “atomic and nanostructured iron (A/N-Fe) pairs”, comprising atomically dispersed iron active centers spin-polarized by nanostructured iron carbide ferromagnets, to boost the critical protonation steps. The as-designed catalyst displays a broad window (300 mV) for CO selectivity > 90% (98% maximum), even outperforming numerous cutting-edge M—N—C systems. The well-placed control of proton dynamics by A/N-Fe can promote *COOH/*CO formation and simultaneously suppress H2 evolution, benefiting from the magnetic-proximity-induced exchange splitting (spin polarization) that properly adjusts energy levels of the Fe sites’ d-shells, and further those of the adsorbed intermediates’ antibonding molecular orbitals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grim R G, Huang Z, Guarnieri M T, Ferrell J R, Tao L, Schaidle J A. Transforming the carbon economy: challenges and opportunities in the convergence of low-cost electricity and reductive CO2 utilization. Energy & Environmental Science, 2020, 13(2): 472–494

    Article  CAS  Google Scholar 

  2. Kortlever R, Shen J, Schouten K J P, Calle-Vallejo F, Koper M T M. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. Journal of Physical Chemistry Letters, 2015, 6(20): 4073–4082

    Article  CAS  Google Scholar 

  3. Birdja Y Y, Perez-Gallent E, Figueiredo M C, Gottle A J, Calle-Vallejo F, Koper M T M. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nature Energy, 2019, 4(9): 732–745

    Article  CAS  Google Scholar 

  4. Ross M B, De Luna P, Li Y, Dinh C T, Kim D, Yang P, Sargent E H. Designing materials for electrochemical carbon dioxide recycling. Nature Catalysis, 2019, 2(8): 648–658

    Article  CAS  Google Scholar 

  5. Zhang Y J, Sethuraman V, Michalsky R, Peterson A A. Competition between CO2 reduction and H2 evolution on transition-metal electrocatalysts. ACS Catalysis, 2014, 4(10): 3742–3748

    Article  CAS  Google Scholar 

  6. Cave E R, Shi C, Kuhl K P, Hatsukade T, Abram D N, Hahn C, Chan K, Jaramillo T F. Trends in the catalytic activity of hydrogen evolution during CO2 electroreduction on transition metals. ACS Catalysis, 2018, 8(4): 3035–3040

    Article  CAS  Google Scholar 

  7. Zheng T, Jiang K, Wang H. Recent advances in electrochemical CO2-to-CO conversion on heterogeneous catalysts. Advanced Materials, 2018, 30(48): 1802066

    Article  Google Scholar 

  8. Wang Y, Liu Y, Liu W, Wu J, Li Q, Feng Q, Chen Z, Xiong X, Wang D, Lei Y. Regulating the coordination structure of metal single atoms for efficient electrocatalytic CO2 reduction. Energy & Environmental Science, 2020, 13(12): 4609–4624

    Article  CAS  Google Scholar 

  9. Pan Y, Zhang C, Liu Z, Chen C, Li Y D. Structural regulation with atomic-level precision: from single-atomic site to diatomic and atomic interface catalysis. Matter, 2020, 2(1): 78–110

    Article  Google Scholar 

  10. Zang W, Kou Z, Pennycook S J, Wang J. Heterogeneous single atom electrocatalysis, where “singles” are “married”. Advanced Energy Materials, 2020, 10(9): 1903181

    Article  CAS  Google Scholar 

  11. Jiao J, Lin R, Liu S, Cheong W C, Zhang C, Chen Z, Pan Y, Tang J, Wu K, Hung S F, Chen H M, Zheng L, Lu Q, Yang X, Xu B, Xiao H, Li J, Wang D, Peng Q, Chen C, Li Y. Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nature Chemistry, 2019, 11(3): 222–228

    Article  CAS  Google Scholar 

  12. Liu C, Wu Y, Sun K, Fang J, Huang A, Pan Y, Cheong W C, Zhuang Z, Zhuang Z, Yuan Q, Xin H L, Zhang C, Zhang J, Xiao H, Chen C, Li Y. Constructing FeN4/graphitic nitrogen atomic interface for high-efficiency electrochemical CO2 reduction over a broad potential window. Chem, 2021, 7(5): 1297–1307

    Article  CAS  Google Scholar 

  13. Bondue C J, Graf M, Goyal A, Koper M T M. Suppression of hydrogen evolution in acidic electrolytes by electrochemical CO2 reduction. Journal of the American Chemical Society, 2021, 143(1): 279–285

    Article  CAS  Google Scholar 

  14. Ma W, Xie S, Zhang X G, Sun F, Kang J, Jiang Z, Zhang Q, Wu D Y, Wang Y. Promoting electrocatalytic CO2 reduction to formate via sulfur-boosting water activation on indium surfaces. Nature Communications, 2019, 10(1): 892

    Article  Google Scholar 

  15. Wang X, Sang X, Dong C L, Yao S, Shuai L, Lu J, Yang B, Li Z, Lei L, Qiu M, Dai L, Hou Y. Proton capture strategy for enhancing electrochemical CO2 reduction on atomically dispersed metal-nitrogen active sites. Angewandte Chemie International Edition, 2021, 60(21): 11959–11965

    Article  CAS  Google Scholar 

  16. Ju W, Bagger A, Hao G P, Sofia Varela A, Sinev I, Bon V, Roldan Cuenya B, Kaskel S, Rossmeisl J, Strasser P. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nature Communications, 2017, 8(1): 944

    Article  Google Scholar 

  17. Zhang H, Li J, Xi S, Du Y, Hai X, Wang J, Xu H, Wu G, Zhang J, Lu J, Wang J. A graphene-supported single-atom FeN5 catalytic site for efficient electrochemical CO2 reduction. Angewandte Chemie International Edition, 2019, 58(42): 14871–14876

    Article  CAS  Google Scholar 

  18. Li J, Mao S, Hou Y, Lei L, Yuan C. 3D edge-enriched Fe3C@C nanocrystals with a core-shell structure grown on reduced graphene oxide networks for efficient oxygen reduction reaction. ChemSusChem, 2018, 11(18): 3292–3298

    Article  CAS  Google Scholar 

  19. Zhang W, Yin J, Sun M, Wang W, Chen C, Altunkaya M, Emwas A H, Han Y, Schwingenschlogl U, Alshareef H N. Direct pyrolysis of supermolecules: an ultrahigh edge-nitrogen doping strategy of carbon anodes for potassium-ion batteries. Advanced Materials, 2020, 32(25): 2000732

    Article  CAS  Google Scholar 

  20. Shao Y, Pang R, Shi X. Stability of two-dimensional iron carbides suspended across graphene pores: first-principles particle swarm optimization. Journal of Physical Chemistry C, 2015, 119(40): 22954–22960

    Article  CAS  Google Scholar 

  21. Zutic I, Matos-Abiague A, Scharf B, Dery H, Belashchenko K. Proximitized materials. Materials Today, 2019, 22: 85–107

    Article  CAS  Google Scholar 

  22. Stöhr J, Siegmann H C. Magnetism: From Fundamentals to Nanoscale Dynamics. Berlin: Springer, 2006: 235–240

    Google Scholar 

  23. Marder M P. Condensed Matter Physics. Hoboken: Wiley, 2010: 811–813

    Book  Google Scholar 

  24. Norskov J K, Bligaard T, Rossmeisl J, Christensen C H. Towards the computational design of solid catalysts. Nature Chemistry, 2009, 1(1): 37–46

    Article  CAS  Google Scholar 

  25. Zhao Z J, Liu S, Zha S, Cheng D, Studt F, Henkelman G, Gong J. Theory-guided design of catalytic materials using scaling relationships and reactivity descriptors. Nature Reviews Materials, 2019, 4(12): 792–804

    Article  Google Scholar 

  26. Ren X, Wu T Z, Sun Y M, Li Y, Xian G Y, Liu X H, Shen C M, Gracia J, Gao H J, Yang H T, Xu Z J. Spin-polarized oxygen evolution reaction under magnetic field. Nature Communications, 2021, 12(1): 2608

    Article  CAS  Google Scholar 

  27. Wu T Z, Ren X, Sun Y M, Sun S N, Xian G Y, Scherer G G, Fisher A C, Mandler D, Ager J W, Grimaud A, Wang J, Shen C, Yang H, Gracia J, Gao H J, Xu Z J. Spin pinning effect to reconstructed oxyhydroxide layer on ferromagnetic oxides for enhanced water oxidation. Nature Communications, 2021, 12(1): 3634

    Article  CAS  Google Scholar 

  28. Demtröder W. Atoms, Molecules and Photons: An Introduction to Atomic-, Molecular- and Quantum Physics. Berlin: Springer, 2018: 320–322

    Book  Google Scholar 

  29. Zhang X, Li X Q, Zhang D, Su N Q, Yang W T, Everitt H O, Liu J. Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation. Nature Communications, 2017, 8(1): 14542

    Article  CAS  Google Scholar 

  30. Jiang W J, Gu L, Li L, Zhang Y, Zhang X, Zhang L J, Wang J Q, Hu J S, Wei Z, Wan L J. Understanding the high activity of Fe-N-C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe-Nx. Journal of the American Chemical Society, 2016, 138(10): 3570–3578

    Article  CAS  Google Scholar 

  31. Hu J, Wang S, Yu J, Nie W, Sun J, Wang S. Duet Fe3C and FeNx sites for H2O2 generation and activation toward enhanced electro-Fenton performance in wastewater treatment. Environmental Science & Technology, 2021, 55(2): 1260–1269

    Article  CAS  Google Scholar 

  32. Li J, Ghoshal S, Liang W, Sougrati M T, Jaouen F, Halevi B, McKinney S, McCool G, Ma C, Yuan X, Ma Z F, Mukerjee S, Jia Q. Structural and mechanistic basis for the high activity of Fe—N—C catalysts toward oxygen reduction. Energy & Environmental Science, 2016, 9(7): 2418–2432

    Article  CAS  Google Scholar 

  33. Gu J, Hsu C S, Bai L, Chen H M, Hu X. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science, 2019, 364(6445): 1091–1094

    Article  CAS  Google Scholar 

  34. Burdyny T, Smith W A. CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions. Energy & Environmental Science, 2019, 12(5): 1442–1453

    Article  CAS  Google Scholar 

  35. Firet N J, Smith W A. Probing the reaction mechanism of CO2 electroreduction over Ag films via operando infrared spectroscopy. ACS Catalysis, 2017, 7(1): 606–612

    Article  CAS  Google Scholar 

  36. Zhu S, Jiang B, Cai W B, Shao M. Direct observation on reaction intermediates and the role of bicarbonate anions in CO2 electrochemical reduction reaction on Cu surfaces. Journal of the American Chemical Society, 2017, 139(44): 15664–15667

    Article  CAS  Google Scholar 

  37. Günzler H, Gremlich H U I R. Spectroscopy: an Introduction. Weinheim: Wiley, 2002: 14–16

    Google Scholar 

  38. Rankin D W H, Mitzel N W, Morrison C A. Structural Methods in Molecular Inorganic Chemistry. Chichester: Wiley, 2013: 237–238

    Google Scholar 

  39. Kettle S F A. Physical Inorganic Chemistry: A Coordination Chemistry Approach. Berlin: Springer, 1996: 229–230

    Book  Google Scholar 

  40. Bell R P. The Proton in Chemistry. London: Chapman & Hall, 1973: 232–235

    Book  Google Scholar 

  41. Goyal A, Marcandalli G, Mints V A, Koper M T M. Competition between CO2 reduction and hydrogen evolution on a gold electrode under well-defined mass transport conditions. Journal of the American Chemical Society, 2020, 142(9): 4154–4161

    Article  CAS  Google Scholar 

  42. Hammes-Schiffer S. Theory of proton-coupled electron transfer in energy conversion processes. Accounts of Chemical Research, 2009, 42(12): 1881–1889

    Article  CAS  Google Scholar 

  43. Liu E, Jiao L, Li J, Stracensky T, Sun Q, Mukerjee S, Jia Q. Interfacial water shuffling the intermediates of hydrogen oxidation and evolution reactions in aqueous media. Energy & Environmental Science, 2020, 13(9): 3064–3074

    Article  CAS  Google Scholar 

  44. Goldsmith Z K, Lam Y C, Soudackov A V, Hammes-Schiffer S. Proton discharge on a gold electrode from triethylammonium in acetonitrile: theoretical modeling of potential-dependent kinetic isotope effects. Journal of the American Chemical Society, 2019, 141(2): 1084–1090

    Article  CAS  Google Scholar 

  45. Lam Y C, Soudackov A V, Hammes-Schiffer S. Theory of electrochemical proton-coupled electron transfer in diabatic vibronic representation: application to proton discharge on metal electrodes in alkaline solution. Journal of Physical Chemistry C, 2020, 124(50): 27309–27322

    Article  CAS  Google Scholar 

  46. Deng D H, Yu L, Chen X Q, Wang G X, Jin L, Pan X L, Deng J, Sun G Q, Bao X H. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angewandte Chemie International Edition, 2013, 52(1): 371–375

    Article  CAS  Google Scholar 

  47. Hu Y, Jensen J O, Zhang W, Cleemann L N, Xing W, Bjerrum N J, Li Q. Hollow spheres of iron carbide nanoparticles encased in graphitic layers as oxygen reduction catalysts. Angewandte Chemie International Edition, 2014, 53(14): 3675–3679

    Article  CAS  Google Scholar 

  48. Xie J, Wang Y. Recent development of CO2 electrochemistry from Li—CO2 batteries to Zn—CO2 batteries. Accounts of Chemical Research, 2019, 52(6): 1721–1729

    Article  CAS  Google Scholar 

  49. Wang X, Xie J, Ghausi M A, Lv J, Huang Y, Wu M, Wang Y, Yao J. Rechargeable Zn—CO2 electrochemical cells mimicking two-step photosynthesis. Advanced Materials, 2019, 31(17): 1807807

    Article  Google Scholar 

  50. Liang X, Xiao J, Weng W, Xiao W. Electrochemical reduction of carbon dioxide and iron oxide in molten salts to Fe/Fe3C modified carbon for electrocatalytic oxygen evolution. Angewandte Chemie International Edition, 2021, 60(4): 2120–2124

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We sincerely thank Dr. Guoqiang Shen (Tianjin University) for his multitude of instructive advice on theory, logic and particulars. This work was financially supported by National Natural Science Foundation of China (Grant Nos. 22075245, 21922811, 21878270, and 21961160742), Zhejiang Provincial Natural Science Foundation of China (Grant No. LR19B060002), Fundamental Research Funds for the Central Universities (Grant No. 2020XZZX002-09), Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang (Grant No. 2019R01006), Startup Foundation for Hundred-Talent Program of Zhejiang University, Key Laboratory of Marine Materials and Related Technologies, Chinese Academy of Science, and Zhejiang Key Laboratory of Marine Materials and Protective Technologies (2020K10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongjian Li.

Electronic Supplementary Material

11705_2022_2197_MOESM1_ESM.pdf

Spin polarization strategy to deploy proton resource over atomic-level metal sites for highly selective CO2 electrolysis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Wang, X., Sang, X. et al. Spin polarization strategy to deploy proton resource over atomic-level metal sites for highly selective CO2 electrolysis. Front. Chem. Sci. Eng. 16, 1772–1781 (2022). https://doi.org/10.1007/s11705-022-2197-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2197-4

Keywords

Navigation