Skip to main content
Log in

Improving lipid production by Rhodotorula glutinis for renewable fuel production based on machine learning

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Microbial lipid fermentation encompasses intricate complex cell growth processes and heavily relies on expert experience for optimal production. Digital modeling of the fermentation process assists researchers in making intelligent decisions, employing logical reasoning and strategic planning to optimize lipid fermentation. It this study, the effects of medium components and concentrations on lipid fermentation were investigated, first. And then, leveraging the collated data, a variety of machine learning algorithms were used to model and optimize the lipid fermentation process. The models, based on artificial neural networks and support vector machines, achieved R2 values all higher than 0.93, ensuring accurate predictions of the fermentation process. Multiple linear regression was used to evaluate the respective target parameter, which were affected by the medium components of lipid fermentation. Lastly, single and multi-objective optimization were conducted for lipid fermentation using the genetic algorithm. Experimental results demonstrated the maximum biomass of 50.3 g·L−1 and maximum lipid concentration of 14.1 g·L−1 with the error between the experimental and predicted values less than 5%. The results of the multi-objective optimization reveal the synergistic and competitive relationship between biomass, lipid concentration, and conversion rate, which lay a basis for in-depth optimization and amplification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bao W, Li Z, Wang X, Gao R, Zhou X, Cheng S, Men Y, Zheng L. Approaches to improve the lipid synthesis of oleaginous yeast Yarrowia lipolytica: a review. Renewable & Sustainable Energy Reviews, 2021, 149(6): 111386

    Article  CAS  Google Scholar 

  2. Chen X, Sun S. Color reversion of refined vegetable oils: a review. Molecules, 2023, 28(13): 5177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Economou C, Aggelis G, Pavlou S, Vayenas D V. Modeling of single-cell oil production under nitrogen-limited and substrate inhibition conditions. Biotechnology and Bioengineering, 2011, 108(5): 1049–1055

    Article  CAS  PubMed  Google Scholar 

  4. Gao B, Hong J, Chen J, Zhang H, Hu R, Zhang C. The growth, lipid accumulation and adaptation mechanism in response to variation of temperature and nitrogen supply in psychrotrophic filamentous microalga Xanthonema hormidioides (Xanthophyceae). Biotechnology for Biofuels and Bioproducts, 2023, 16(1): 12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gong G, Liu L, Zhang X, Tan T. Comparative evaluation of different carbon sources supply on simultaneous production of lipid and carotene of Rhodotorula glutinis with irradiation and the assessment of key gene transcription. Bioresource Technology, 2019, 288(5): 121559

    Article  CAS  PubMed  Google Scholar 

  6. Henriques D, Minebois R, Mendoza S N, Macías L G, Pérez-Torrado R, Barrio E, Teusink B, Querol A, Balsa-Canto E. A multiphase multiobjective dynamic genome-scale model shows different redox balancing among yeast species of the Saccharomyces genus in fermentation. Msystems, 2021, 6(4): e00260–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Joe P. Global edible vegetable oil market trends. Biomedical Journal of Scientific & Technical Research, 2018, 2(1): 2282–2291

    Article  Google Scholar 

  8. Kadir W N A, Lam M K, Uemura Y, Lim J W, Lee K T. Harvesting and pre-treatment of microalgae cultivated in wastewater for biodiesel production: a review. Energy Conversion and Management, 2018, 171(5): 1416–1429

    Article  CAS  Google Scholar 

  9. Khaleghi M K, Savizi I S P, Lewis N E, Shojaosadati S A. Synergisms of machine learning and constraint-based modeling of metabolism for analysis and optimization of fermentation parameters. Biotechnology Journal, 2021, 16(11): 2100212

    Article  CAS  Google Scholar 

  10. Kim G B, Kim W J, Kim H U, Lee S Y. Machine learning applications in systems metabolic engineering. Current Opinion in Biotechnology, 2020, 64: 1–9

    Article  CAS  PubMed  Google Scholar 

  11. Kolouchová I, Mat’átková O, Sigler K, Masák J, Řezanka T. Lipid accumulation by oleaginous and non-oleaginous yeast strains in nitrogen and phosphate limitation. Folia Microbiologica, 2016, 61(5): 431–438

    Article  PubMed  Google Scholar 

  12. Kot A M, Błażejak S, Kieliszek M, Gientka I, Bryś J, Reczek L, Pobiega K. Effect of exogenous stress factors on the biosynthesis of carotenoids and lipids by Rhodotorula yeast strains in media containing agro-industrial waste. World Journal of Microbiology & Biotechnology, 2019, 35(10): 157

    Article  Google Scholar 

  13. Kumar M, Husain M, Upreti N, Gupta D. Genetic algorithm: review and application. SSRN Electronic Journal, 2020, 2(2): 451–454

    Google Scholar 

  14. Leca E, Zennaro B, Hamelin J, Carrère H, Sambusiti C. Use of additives to improve collective biogas plant performances: a comprehensive review. Biotechnology Advances, 2023, 65: 108129

    Article  CAS  PubMed  Google Scholar 

  15. Leong W H, Lim J W, Lam M K, Uemura Y, Ho Y C. Third generation biofuels: a nutritional perspective in enhancing microbial lipid production. Renewable & Sustainable Energy Reviews, 2018, 91(4): 950–961

    Article  CAS  Google Scholar 

  16. Li X, Dong Y, Chang L, Chen L, Wang G, Zhuang Y, Yan X. Dynamic hybrid modeling of fuel ethanol fermentation process by integrating biomass concentration XGBoost model and kinetic parameter artificial neural network model into mechanism model. Renewable Energy, 2023, 205: 574–582

    Article  CAS  Google Scholar 

  17. Li Y, Xu H, Li Z, Meng S, Song H. Catalytic methanotreating of vegetable oil: a pathway to second-generation biodiesel. Fuel, 2022, 311(10): 122504

    Article  CAS  Google Scholar 

  18. Li H, Zhong Y, Lu Q, Zhang X, Wang Q, Liu H, Diao Z, Yao C, Liu H. Co-cultivation of: Rhodotorula glutinis and Chlorella pyrenoidosa to improve nutrient removal and protein content by their synergistic relationship. RSC Advances, 2019, 9(25): 14331–14342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Llamas M, Greses S, Magdalena J A, González-Fernández C, Tomás-Pejó E. Microbial co-cultures for biochemicals production from lignocellulosic biomass: a review. Bioresource Technology, 2023, 386(10): 129499

    Article  CAS  PubMed  Google Scholar 

  20. Lu H, Chen H, Tang X, Yang Q, Zhang H, Chen Y Q, Chen W. Time-resolved multi-omics analysis reveals the role of nutrient stress-induced resource reallocation for TAG accumulation in oleaginous fungus Mortierella alpina. Biotechnology for Biofuels, 2020, 13(1): 116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nosrati-Ghods N, Harrison S T L, Isafiade A J, Leng Tai S. Mathematical modelling of bioethanol fermentation from glucose, xylose or their combination: a review. ChemBioEng Reviews, 2020, 7(3): 68–88

    Article  CAS  Google Scholar 

  22. Papanikolaou S, Aggelis G. Lipids of oleaginous yeasts. Part I: biochemistry of single cell oil production. European Journal of Lipid Science and Technology, 2011, 113(8): 1031–1051

    Article  CAS  Google Scholar 

  23. Ramanauske N, Balezentis T, Streimikiene D. Biomass use and its implications for bioeconomy development: a resource efficiency perspective for the European countries. Technological Forecasting and Social Change, 2023, 193: 122628

    Article  Google Scholar 

  24. Safarian S, Saryazdi S M E, Unnthorsson R, Richter C. Artificial neural network modeling of bioethanol production via syngas fermentation. Biophysical Economics and Sustainability, 2021, 6(1): 1–13

    Article  Google Scholar 

  25. Sales de Menezes L H, Carneiro L L, Maria de Carvalho Tavares I, Santos P H, Pereira das Chagas T, Mendes A A, Paranhos da Silva E G, Franco M, Rangel de Oliveira J. Artificial neural network hybridized with a genetic algorithm for optimization of lipase production from Penicillium roqueforti ATCC 10110 in solid-state fermentation. Biocatalysis and Agricultural Biotechnology, 2021, 31: 101885

    Article  CAS  Google Scholar 

  26. Silva J D, Martins L H, Moreira D K, Silva L D, Barbosa P D, Komesu A, Ferreira N R, Oliveira J A. Microbial lipid based biorefinery concepts: a review of status and prospects. Foods, 2023, 12(10): 2074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Singh A, Wilson S, Ward O P. Docosahexaenoic acid (DHA) production by Thraustochytrium sp. ATCC 20892. World Journal of Microbiology & Biotechnology, 1996, 12(1): 76–81

    Article  CAS  Google Scholar 

  28. Singh V, Haque S, Niwas R, Srivastava A, Pasupuleti M, Tripathi C K. Strategies for fermentation medium optimization: an in-depth review. Frontiers in Microbiology, 2017, 7: 1–12

    Article  Google Scholar 

  29. Song S, Xiong X, Wu X, Xue Z. Modeling the SOFC by BP neural network algorithm. International Journal of Hydrogen Energy, 2021, 46(38): 20065–20077

    Article  CAS  Google Scholar 

  30. Sun H, Gao Z, Zhang L, Wang X, Gao M, Wang Q. A comprehensive review on microbial lipid production from wastes: research updates and tendencies. Environmental Science and Pollution Research International, 2023, 30(33): 79654–79675

    Article  CAS  PubMed  Google Scholar 

  31. Thon C, Finke B, Kwade A, Schilde C. Artificial intelligence in process engineering. Advanced Intelligent Systems, 2021, 3(6): 200261

    Article  Google Scholar 

  32. Tomás-Pejó E, Morales-Palomo S, González-Fernández C. Microbial lipids from organic wastes: outlook and challenges. Bioresource Technology, 2021, 323(3): 124612

    Article  PubMed  Google Scholar 

  33. Tranmer M, Murphy J, Elliot M, Pampaka M. Multiple Linear Regression (2nd Edition). Manchester, UK: Cathie Marsh Institute, 2020

    Google Scholar 

  34. Wang H, Peng X, Zhang H, Yang S, Li H. Microorganisms-promoted biodiesel production from biomass: a review. Energy Conversion and Management: X, 2021, 12: 100137

    Article  CAS  Google Scholar 

  35. Wang J, Ledesma-Amaro R, Wei Y, Ji B, Ji X J. Metabolic engineering for increased lipid accumulation in Yarrowia lipolytica: a review. Bioresource Technology, 2020, 313: 123707

    Article  CAS  PubMed  Google Scholar 

  36. Wang K, Shi T Q, Wang J, Wei P, Ledesma-Amaro R, Ji X J. Engineering the lipid and fatty acid metabolism in Yarrowia lipolytica for sustainable production of high oleic oils. ACS Synthetic Biology, 2022, 11(4): 1542–1554

    Article  CAS  PubMed  Google Scholar 

  37. Wang Q, Han W, Jin W, Gao S, Zhou X. Docosahexaenoic acid production by Schizochytrium sp: review and prospect. Food Biotechnology, 2021, 35(2): 111–135

    Article  CAS  Google Scholar 

  38. Willis W M, Lencki R W, Marangoni A G. Lipid modification strategies in the production of nutritionally functional fats and oils. Critical Reviews in Food Science and Nutrition, 1998, 38(8): 639–674

    Article  CAS  PubMed  Google Scholar 

  39. Xue F, Gao B, Zhu Y, Zhang X, Feng W, Tan T. Pilot-scale production of microbial lipid using starch wastewater as raw material. Bioresource Technology, 2010, 101(15): 6092–6095

    Article  CAS  PubMed  Google Scholar 

  40. Yang J, Huang Y, Xu H, Gu D, Xu F, Tang J, Fang C, Yang Y. Optimization of fungi co-fermentation for improving anthraquinone contents and antioxidant activity using artificial neural networks. Food Chemistry, 2020, 313: 126138

    Article  PubMed  Google Scholar 

  41. Zhang L, Chao B, Zhang X. Modeling and optimization of microbial lipid fermentation from cellulosic ethanol wastewater by Rhodotorula glutinis based on the support vector machine. Bioresource Technology, 2021, 301(11): 122781

    Google Scholar 

  42. Zhang L, Lee J E, Ok Y, Dai Y, Tong Y. Enhancing microbial lipids yield for biodiesel production by oleaginous yeast Lipomyces starkeyi fermentation: a review. Bioresource Technology, 2022, 344(1): 126294

    Article  CAS  PubMed  Google Scholar 

  43. Zhang L, Song Y, Wang Q, Zhang X. Culturing rhodotorula glutinis in fermentation-friendly deep eutectic solvent extraction liquor of lignin for producing microbial lipid. Bioresource Technology, 2021, 337(5): 125475

    Article  CAS  PubMed  Google Scholar 

  44. Zhang X, Liu M, Zhang X, Tan T. Microbial lipid production and organic matters removal from cellulosic ethanol wastewater through coupling oleaginous yeasts and activated sludge biological method. Bioresource Technology, 2018, 267(11): 395–400

    CAS  PubMed  Google Scholar 

  45. Zheng Z Y, Xie G, Li L, Liu W L. The joint effect of ultrasound and magnetic Fe3O4 nanoparticles on the yield of 2,6-dimethoxy-ρ-benzoquinone from fermented wheat germ: comparison of evolutionary algorithms and interactive analysis of paired-factors. Food Chemistry, 2020, 302: 125275

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant No. 2022YFB4201903) and the National “111 Project” of China (Grant No. B13005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Zhang.

Ethics declarations

Competing interests The authors declare that they have no competing interests.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Zhang, C., Zhao, X. et al. Improving lipid production by Rhodotorula glutinis for renewable fuel production based on machine learning. Front. Chem. Sci. Eng. 18, 51 (2024). https://doi.org/10.1007/s11705-024-2410-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11705-024-2410-8

Keywords

Navigation