Skip to main content
Log in

Lipid accumulation by oleaginous and non-oleaginous yeast strains in nitrogen and phosphate limitation

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

We investigated the possibility of utilizing both oleaginous yeast species accumulating large amounts of lipids (Yarrowia lipolytica, Rhodotorula glutinis, Trichosporon cutaneum, Candida sp.) and traditional biotechnological non-oleaginous ones characterized by high biomass yield (Kluyveromyces polysporus, Torulaspora delbrueckii, Saccharomyces cerevisiae) as potential producers of biofuel-utilizable and nutritionally valuable lipids. The main objective was to increase lipid accumulation by increasing C/P ratio together with higher C/N ratio, while maintaining high biomass yield. The C/N ratio of 30 was found to lead to higher biomass content and the total lipid content increased significantly with higher C/P ratio. With higher ratios of both C/N and C/P, the content of monounsaturated fatty acids (FAs) in cell lipids increased while polyunsaturated FAs decreased. Oleaginous yeast species had a lower proportion of unsaturated FAs (approx. 80 %) than non-oleaginous strains (approx. 90 %). At a C/N ratio of 30 and C/P ratio 1043, T. cutaneum produced a high amount of ω-6 unsaturated linoleic acid, the precursor of some prostaglandins, leukotrienes, and thromboxanes, while Candida sp. and K. polysporus accumulated a high content of palmitoleic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4

Similar content being viewed by others

References

  • Angerbauer C, Siebenhofer M, Mittelbach M, Guebitz GM (2008) Conversion of sewage sludge into lipids by Lipomyces starkeyi for biodiesel production. Bioresour Technol 99:3051–3056

    Article  CAS  PubMed  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  • Braunwald T, Schwemmlein L, Graeff-Honninger S, French WT, Hernandez R, Holmes WE, Claupein W (2013) Effect of different C/N ratios on carotenoid and lipid production by Rhodotorula glutinis. Appl Microbiol Biotechnol 97:6581–6588

    Article  CAS  PubMed  Google Scholar 

  • Carman GM, Han GS (2011) Regulation of phospholipid synthesis in the yeast Saccharomyces cerevisiae. Annu Rev Biochem 80:859–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen XF, Huang C, Yang XY, Xiong L, Chen XD, Ma LL (2013) Evaluating the effect of medium composition and fermentation condition on the microbial oil production by Trichosporon cutaneum on corncob acid hydrolysate. Bioresour Technol 143:18–24

    Article  CAS  PubMed  Google Scholar 

  • Chi Z, Zheng Y, Ma J, Chen S (2011) Oleaginous yeast Cryptococcus curvatus culture with dark fermentation hydrogen production effluent as feedstock for microbial lipid production. Int J Hydrogen Energy 36:9542–9550

    Article  CAS  Google Scholar 

  • Dey P, Maiti MK (2013) Molecular characterization of a novel isolate of Candida tropicalis for enhanced lipid production. J Appl Microbiol 114:1357–1368

    Article  CAS  PubMed  Google Scholar 

  • Dyerberg J (1986) Linolenate derived polyunsaturated fatty acids and prevention of atherosclerosis. Nutr Rev 44:125–134

    Article  CAS  PubMed  Google Scholar 

  • Eldridge G (2006) Control of biofilm with a biofilm inhibitor, US20060228384A1

  • Galafassi S, Cucchetti D, Pizza F, Franzosi G, Bianchi D, Compagno C (2012) Lipid production for second generation biodiesel by the oleaginous yeast Rhodotorula graminis. Bioresour Technol 111:398–403

    Article  CAS  PubMed  Google Scholar 

  • Gill CO, Hall MJ, Ratledge C (1977) Lipid accumulation in an oleaginous yeast (Candida 107) growing on glucose in single-stage continuous culture. Appl Environ Microbiol 33:231–239

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gouda MK, Omar SH, Aouad LM (2008) Single cell oil production by Gordonia sp DG using agro-industrial wastes. World J Microbiol Biotechnol 24:1703–1711

    Article  CAS  Google Scholar 

  • Granger LM, Perlot P, Goma G, Pareilleux A (1993a) Effect of various nutrient limitations on fatty acid production by Rhodotorula glutinis. Appl Microbiol Biotechnol 38:784–789

    Article  CAS  Google Scholar 

  • Granger LM, Perlot P, Goma G, Pareilleux A (1993b) Efficiency of fatty acid synthesis by oleaginous yeasts—prediction of yield and fatty acid cell content from consumed C/N ratio by a simple method. Biotechnol Bioeng 42:1151–1156

    Article  CAS  PubMed  Google Scholar 

  • Hayashi N, Togawa K, Yanagisawa M, Hosogi J, Mimura D, Yamamoto Y (2003) Effect of sunlight exposure and aging on skin surface lipids and urate. Exp Dermatol 12:13–17

    Article  CAS  PubMed  Google Scholar 

  • Hernandez E, Rusli M, Griffin M (2013) Phospholipid compositions enriched for palmitoleic, myristoleic or lauroleic acid, their preparation and their use in treating metabolic and cardiovascular disease, US20140364399A1

  • Hu CM, Zhao X, Zhao J, Wu SG, Zhao ZBK (2009) Effects of biomass hydrolysis by-products on oleaginous yeast Rhodosporidium toruloides. Bioresour Technol 100:4843–4847

    Article  CAS  PubMed  Google Scholar 

  • Hu L, Goldman V, Minerva J, Wendling S (2011) Hair growth and/or regrowth compositions, US20110144141A1

  • Hua YY, Zhao X, Zhao J, Zhang SF, Zhao ZB (2007) Lipid production by Rhodosporidium toruloides using Jerusalem artichoke tubers. China Biotechnol 27:59–63

    CAS  Google Scholar 

  • Jeon MK, Cheon HG (2009) Promising strategies for obesity pharmacotherapy: melanocortin-4 (MC-4) receptor agonists and melanin concentrating hormone (MCH) receptor-1 antagonists. Curr Top Med Chem 9:504–538

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhao Z, Bai F (2007) High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzyme Microbiol Technol 41:312–317

    Article  Google Scholar 

  • Lindberg AM, Molin G (1993) Effect of temperature and glucose supply on the production of polyunsaturated fatty acids by the fungus Mortierella alpina CBS 343.66 in fermenter cultures. Appl Microbiol Biotechnol 39:450–455

    Article  CAS  Google Scholar 

  • Liu ZG, Zhao QL, Lee DJ, Yang N (2008) Enhancing phosphorus recovery by a new internal recycle seeding MAP reactor. Bioresour Technol 99:6488–6493

    Article  CAS  PubMed  Google Scholar 

  • Liu JX, Yue QY, Gao BY, Wang Y, Li Q, Zhang PD (2013) Research on microbial lipid production from potato starch wastewater as culture medium by Lipomyces starkeyi. Water Sci Technol 67:1802–1808

    Article  CAS  PubMed  Google Scholar 

  • Lomascolo A, Dubreucq E, Perrier V, Galzy P (1994) Study of lipids in Lipomyces and Waltomyces. Can J Microbiol 40:724–729

    Article  CAS  Google Scholar 

  • Papanikolaou S, Aggelis G (2002) Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture. Bioresour Technol 82:43–49

    Article  CAS  PubMed  Google Scholar 

  • Papanikolaou S, Aggelis G (2010) Yarrowia lipolytica: a model microorganism used for the production of tailor-made lipids. Eur J Lipid Sci Technol 112:639–654

    Article  CAS  Google Scholar 

  • Papanikolaou S, Aggelis G (2011) Lipids of oleaginous yeasts. Part II: technology and potential applications. Eur J Lipid Sci Technol 113:1052–1073

    Article  CAS  Google Scholar 

  • Ratledge C (1982) Microbial oils and fats—an overview. J Am Oil Chem Soc 59:A294–A294

    Google Scholar 

  • Ratledge C (1988) Yeasts for lipid production. Biochem Soc Trans 16:1088–1091

    Article  CAS  PubMed  Google Scholar 

  • Ratledge C, Wynn JP (2002) The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol 51:1–51

    Article  CAS  PubMed  Google Scholar 

  • Razavi SH, Mousavi SM, Yeganeh HM, Marc I (2007) Fatty acid and carotenoid production by Sporobolomyces ruberrimus when using technical glycerol and ammonium sulfate. J Microbiol Biotechnol 17:1591–1597

    CAS  Google Scholar 

  • Rezanka T, Kolouchova I, Cejkova A, Cajthaml T, Sigler K (2013a) Identification of regioisomers and enantiomers of triacylglycerols in different yeasts using reversed- and chiral-phase LC-MS. J Sep Sci 36:3310–3320

    CAS  PubMed  Google Scholar 

  • Rezanka T, Matoulkova D, Kolouchova I, Masak J, Sigler K (2013b) Brewer’s yeast as a new source of palmitoleic acid-analysis of triacylglycerols by LC-MS. J Am Oil Chem Soc 90:1327–1342

    Article  CAS  Google Scholar 

  • Sitepu IR et al (2013) Manipulation of culture conditions alters lipid content and fatty acid profiles of a wide variety of known and new oleaginous yeast species. Bioresour Technol 144:360–369

    Article  CAS  PubMed  Google Scholar 

  • Steen EJ et al (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463:559–U182

    Article  CAS  PubMed  Google Scholar 

  • Sugano M, Ishida T, Yoshida K, Tanaka K, Niwa M, Arima M, Morita A (1986) Effects of mold oil containing gamma-linolenic acid on the blood cholesterol and eicosanoid levels in rats. Agric Biol Chem 50:2483–2491

    CAS  Google Scholar 

  • Szogi AA, Vanotti MB (2009) Prospects for phosphorus recovery from poultry litter. Bioresour Technol 100:5461–5465

    Article  CAS  PubMed  Google Scholar 

  • Tsigie YA et al (2012) Oil production from Yarrowia lipolytica Po1g using rice bran hydrolysate. J Biomed Biotechnol. doi:10.1155/2012/378384

    PubMed  PubMed Central  Google Scholar 

  • Veen M, Lang C (2004) Production of lipid compounds in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 63:635–646

    Article  CAS  PubMed  Google Scholar 

  • Vicente G et al (2009) Biodiesel production from biomass of an oleaginous fungus. Biochem Eng J 48:22–27

    Article  CAS  Google Scholar 

  • Wille JJ, Kydonieus A (2003) Palmitoleic acid isomer (C16: 1 Delta 6) in human skin sebum is effective against gram-positive bacteria. Skin Pharmacol Appl Skin Physiol 16:176–187

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Hu C, Jin G, Zhao X, Zhao ZK (2010) Phosphate-limitation mediated lipid production by Rhodosporidium toruloides. Bioresour Technol 101:6124–6129

    Article  CAS  PubMed  Google Scholar 

  • Yoon SH, Rhee JS (1983) Lipid from yeast fermentation—effects of cultural conditions on lipid production and its characteristics of Rhodotorula glutinis. J Am Oil Chem Soc 60:1281–1286

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by Czech Science Foundation (GACR) project P503 14-00227S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Maťátková.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolouchová, I., Maťátková, O., Sigler, K. et al. Lipid accumulation by oleaginous and non-oleaginous yeast strains in nitrogen and phosphate limitation. Folia Microbiol 61, 431–438 (2016). https://doi.org/10.1007/s12223-016-0454-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-016-0454-y

Keywords

Navigation