Skip to main content
Log in

Size-controllable synthesis of monodispersed nitrogen-doped carbon nanospheres from polydopamine for high-rate supercapacitors

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Monodispersed nitrogen-doped carbon nanospheres with tunable particle size (100–230 nm) were synthesized via self-polymerization of biochemical dopamine in the presence of hexamethylenetetramine as a buffer and F127 as a size controlling agent. Hexamethylenetetramine can mildly release NH3, which in turn initiates the polymerization reaction of dopamine. The carbon nanospheres obtained exhibited a significant energy storage capability of 265 F·g−1 at 0.5 A·g−1 and high-rate performance of 82% in 6 mol·L−1 KOH (20 A·g−1), which could be attributed to the presence of abundant micro-mesoporous structure, doped nitrogen functional groups and the small particle size. Moreover, the fabricated symmetric supercapacitor device displayed a high stability of 94% after 5000 cycles, revealing the considerable potential of carbon nanospheres as electrode materials for energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Cao S, Zhang H, Zhao Y, Zhao Y. Pillararene/calixarene-based systems for battery and supercapacitor applications. eScience, 2021, 1: 28–43

    Article  Google Scholar 

  2. Jiao Z, Chen Y, Du M, Demir M, Yan F, Xia W, Zhang Y, Wang C, Gu M, Zhang X, Zou J. 3D hollow NiCo LDH nanocages anchored on 3D CoO sea urchin-like microspheres: a novel 3D/3D structure for hybrid supercapacitor electrodes. Journal of Colloid and Interface Science, 2023, 633: 723–736

    Article  CAS  PubMed  Google Scholar 

  3. Li C, Jiang G, Demir M, Sun Y, Wang R, Liu T. Preparation of rGO/MXene@NiCo-P and rGO/MXene@Fe2O3 positive and negative composite electrodes for high-performance asymmetric supercapacitors. Journal of Energy Storage, 2022, 56: 105986

    Article  Google Scholar 

  4. Zhou M, Yan S X, Wang Q, Tan M X, Wang D Y, Yu Z Q, Luo S H, Zhang Y H, Liu X. Walnut septum-derived hierarchical porous carbon for ultra-high-performance supercapacitors. Rare Metals, 2022, 41(7): 2280–2291

    Article  CAS  Google Scholar 

  5. Yu X H, Yi J L, Zhang R L, Wang F Y, Liu L. Hollow carbon spheres and their noble metal-free hybrids in catalysis. Frontiers of Chemical Science and Engineering, 2021, 15(6): 1380–1407

    Article  CAS  Google Scholar 

  6. Du J, Chen A, Liu L, Li B, Zhang Y. N-doped hollow mesoporous carbon spheres prepared by polybenzoxazines precursor for energy storage. Carbon, 2020, 160: 265–272

    Article  CAS  Google Scholar 

  7. Zhou R, Wang X, Zhou R, Weerasinghe J, Zhang T, Xin Y, Wang H, Cullen P, Wang H, Ostrikov K K. Non-thermal plasma enhances performances of biochar in wastewater treatment and energy storage applications. Frontiers of Chemical Science and Engineering, 2022, 16(4): 475–483

    Article  CAS  Google Scholar 

  8. Yang Y X, Ge K K, ur Rehman S, Bi H. Nanocarbon-based electrode materials applied for supercapacitors. Rare Metals, 2022, 41(12): 3957–3975

    Article  CAS  Google Scholar 

  9. Zhang X, Wang Y, Du Y, Qing M, Yu F, Tian Z Q, Shen P K. Highly active N, S codoped hierarchical porous carbon nanospheres from green and template-free method for supercapacitors and oxygen reduction reaction. Electrochimica Acta, 2019, 318: 272–280

    Article  CAS  Google Scholar 

  10. Krüner B, Schreiber A, Tolosa A, Quade A, Badaczewski F, Pfaff T, Smarsly B M, Presser V. Nitrogen-containing novolac-derived carbon beads as electrode material for supercapacitors. Carbon, 2018, 132: 220–231

    Article  Google Scholar 

  11. Xiong S, Fan J, Wang Y, Zhu J, Yu J, Hu Z. A facile template approach to nitrogen-doped hierarchical porous carbon nanospheres from polydopamine for high-performance supercapacitors. Journal of Materials Chemistry A, 2017, 5(43): 18242–18252

    Article  CAS  Google Scholar 

  12. Liu B, Zhang Q, Wang Z, Li L, Jin Z, Wang C, Zhang L, Chen L, Su Z. Nitrogen and sulfur-codoped porous carbon nanospheres with hierarchical micromesoporous structures and an ultralarge pore volume for high-performance supercapacitors. ACS Applied Materials & Interfaces, 2020, 12(7): 8225–8232

    Article  CAS  Google Scholar 

  13. Liu C, Wang J, Li J, Zeng M, Luo R, Shen J, Sun X, Han W, Wang L. Synthesis of N-doped hollow-structured mesoporous carbon nanospheres for high-performance supercapacitors. ACS Applied Materials & Interfaces, 2016, 8(11): 7194–7204

    Article  CAS  Google Scholar 

  14. Qiu Y, Hou M, Gao J, Zhai H, Liu H, Jin M, Liu X, Lai L. One-step synthesis of monodispersed mesoporous carbon nanospheres for high-performance flexible quasi-solid state micro-supercapacitors. Small, 2019, 15(45): 1903836

    Article  CAS  Google Scholar 

  15. Zhang X Q, Lu A H, Sun Q, Yu X F, Chen J Y, Li W C. Unconventional synthesis of large pore ordered mesoporous carbon nanospheres for ionic liquid-based supercapacitors. ACS Applied Energy Materials, 2018, 1(11): 5999–6005

    Article  CAS  Google Scholar 

  16. Liu J, Yang T Y, Wang D W, Lu G Q, Zhao D, Qiao S Z. A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres. Nature Communications, 2013, 4(1): 2798

    Article  Google Scholar 

  17. Li N, Qin B, Kang H, Cai N, Huang S, Xiao Q. Engineering hollow carbon spheres: directly from solid resin spheres to porous hollow carbon spheres via air induced linker cleaving. Nanoscale, 2021, 13(32): 13873–13881

    Article  CAS  PubMed  Google Scholar 

  18. Xin G, Wang M, Zhang W, Song J, Zhang B. Preparation of high-capacitance N, S co-doped carbon nanospheres with hierarchical pores as supercapacitors. Electrochimica Acta, 2018, 291: 168–176

    Article  CAS  Google Scholar 

  19. Wang J G, Liu H, Sun H, Hua W, Wang H, Liu X, Wei B. One-pot synthesis of nitrogen-doped ordered mesoporous carbon spheres for high-rate and long-cycle life supercapacitors. Carbon, 2018, 127: 85–92

    Article  CAS  Google Scholar 

  20. Zhang F, Liu X, Yang M, Cao X, Huang X, Tian Y, Zhang F, Li H. Novel S-doped ordered mesoporous carbon nanospheres toward advanced lithium metal anodes. Nano Energy, 2020, 69: 104443

    Article  CAS  Google Scholar 

  21. Liu R, Mahurin S M, Li C, Unocic R R, Idrobo J C, Gao H J, Pennycook S J, Dai S. Dopamine as a carbon source: the controlled synthesis of hollow carbon spheres and yolk-structured carbon nanocomposites. Angewandte Chemie International Edition, 2011, 50(30): 6799–6802

    Article  CAS  PubMed  Google Scholar 

  22. Tang J, Liu J, Li C, Li Y, Tade M O, Dai S, Yamauchi Y. Synthesis of nitrogen-doped mesoporous carbon spheres with extra-large pores through assembly of diblock copolymer micelles. Angewandte Chemie, 2015, 54(2): 588–593

    Article  CAS  PubMed  Google Scholar 

  23. Tang J, Wang J, Shrestha L K, Hossain M S A, Alothman Z A, Yamauchi Y, Ariga K. Activated porous carbon spheres with customized mesopores through assembly of diblock copolymers for electrochemical capacitor. ACS Applied Materials & Interfaces, 2017, 9(22): 18986–18993

    Article  CAS  Google Scholar 

  24. Song Z, Zhu D, Xue D, Yan J, Chai X, Xiong W, Wang Z, Lv Y, Cao T, Liu M, Gan L. Nitrogen-enriched hollow porous carbon nanospheres with tailored morphology and microstructure for all-solid-state symmetric supercapacitors. ACS Applied Energy Materials, 2018, 8(1): 4293–4303

    Article  Google Scholar 

  25. Zhu Y P, Liu Y P, Yuan Z Y. Biochemistry-inspired direct synthesis of nitrogen and phosphorus dual-doped microporous carbon spheres for enhanced electrocatalysis. Chemical Communications, 2016, 52(10): 2118–2121

    Article  CAS  PubMed  Google Scholar 

  26. Sing K S W. Reporting phisorption data for gas/solid systems. Pure and Applied Chemistry, 1985, 57(4): 603–619

    Article  CAS  Google Scholar 

  27. Li J, Wang S, Ren Y, Ren Z, Qiu Y, Yu J. Nitrogen-doped activated carbon with micrometer-scale channels derived from luffa sponge fibers as electrocatalysts for oxygen reduction reaction with high stability in acidic media. Electrochimica Acta, 2014, 149: 56–64

    Article  CAS  Google Scholar 

  28. Wang Y, Song Y, Xia Y. Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chemical Society Reviews, 2016, 45(21): 5925–5950

    Article  CAS  PubMed  Google Scholar 

  29. Wang M, Liu B, Chen H, Yang D, Li H. N/O codoped porous carbons with layered structure for high-rate performance supercapacitors. ACS Sustainable Chemistry & Engineering, 2019, 7(13): 11219–11227

    Article  CAS  Google Scholar 

  30. Wei W, Chen Z, Zhang Y, Chen J, Wan L, Du C, Xie M, Guo X. Full-faradaicactive nitrogen species doping enables high-energy-density carbon-based supercapacitor. Journal of Energy Chemistry, 2020, 48: 277–284

    Article  Google Scholar 

  31. Orlando J D, Lima R M A P, Li L, Sydlik S A, de Oliveira H P. Electrochemical performance of N-doped carbon-based electrodes for supercapacitors. ACS Applied Electronic Materials, 2022, 4(10): 5040–5054

    Article  CAS  Google Scholar 

  32. Li J, Han K, Wang D, Teng Z, Cao Y, Qi J, Li M, Wang M. Fabrication of high performance structural N-doped hierarchical porous carbon for supercapacitors. Carbon, 2020, 164: 42–50

    Article  CAS  Google Scholar 

  33. Mo Y, Du J, Lv H, Zhang Y, Chen A. N-doped mesoporous carbon nanosheets for supercapacitors with high performance. Diamond and Related Materials, 2021, 111: 108206

    Article  CAS  Google Scholar 

  34. Xue D, Zhu D, Xiong W, Cao T, Wang Z, Lv Y, Li L, Liu M, Gan L. Template-free, self-doped approach to porous carbon spheres with high N/O contents for high-performance supercapacitors. ACS Sustainable Chemistry & Engineering, 2019, 7(7): 7024–7034

    Article  CAS  Google Scholar 

  35. Huang S, Ma D D, Wang X, Shi Y, Xun R, Chen H, Guan H, Tong Y. A space-sacrificed pyrolysis strategy for boron-doped carbon spheres with high supercapacitor performance. Journal of Colloid and Interface Science, 2022, 608: 334–343

    Article  CAS  PubMed  Google Scholar 

  36. Wang Y, Lu C, Cao X, Wang Q, Yang G, Chen J. Porous carbon spheres derived from hemicelluloses for supercapacitor application. International Journal of Molecular Sciences, 2022, 23(13): 7101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Du J, Zhang Y, Lv H, Chen A. N/B-co-doped ordered mesoporous carbon spheres by ionothermal strategy for enhancing supercapacitor performance. Journal of Colloid and Interface Science, 2021, 587: 780–788

    Article  CAS  PubMed  Google Scholar 

  38. Wang H, Zhou H, Gao M, Zhu Y, Liu H, Gao L, Wu M. Hollow carbon spheres with artificial surface openings as highly effective supercapacitor electrodes. Electrochimica Acta, 2019, 298: 552–560

    Article  CAS  Google Scholar 

  39. Zhou C, Chen X, Liu X, Zhou J, Ma Z, Jia M, Song H. Heteroatom-doped multilocular carbon nanospheres with high surface utilization and excellent rate capability as electrode material for supercapacitors. Electrochimica Acta, 2017, 236: 53–60

    Article  CAS  Google Scholar 

  40. Zheng S, Cui Y, Zhang J, Gu Y, Shi X, Peng C, Wang D. Nitrogen doped microporous carbon nanospheres derived from chitin nanogels as attractive materials for supercapacitors. RSC Advances, 2019, 9(19): 10976–10982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang G, Qin J, Zhao Y, Wei J. Nanoporous carbon spheres derived from metal-phenolic coordination polymers for supercapacitor and biosensor. Journal of Colloid and Interface Science, 2019, 544: 241–248

    Article  CAS  PubMed  Google Scholar 

  42. Ke C C, Zhang N, Liu F, Yu Q, Wang F Y, Liu L, Zhang R L, Liu X, Zeng R C. Deflated balloon-like nitrogen-rich sulfur-containing hierarchical porous carbons for high-rate supercapacitors. Applied Surface Science, 2019, 484: 716–725

    Article  CAS  Google Scholar 

  43. Wang Z, Qiang H, Zhu Z, Liu J, Chen C, Zhang D. Facile synthesis of nitrogen-doped mesoporous hollow carbon nanospheres for high-performance supercapacitors. ChemElectroChem, 2018, 5(16): 2242–2249

    Article  CAS  Google Scholar 

  44. Pang J, Zhang W, Zhang H, Zhang J, Zhang H, Cao G, Han M, Yang Y. Sustainable nitrogen-containing hierarchical porous carbon spheres derived from sodium lignosulfonate for high-performance supercapacitors. Carbon, 2018, 132: 280–293

    Article  CAS  Google Scholar 

  45. Wang T, Sun Y, Zhang L, Li K, Yi Y, Song S, Li M, Qiao Z A, Dai S. Space-confined polymerization: controlled fabrication of nitrogen-doped polymer and carbon microspheres with refined hierarchical architectures. Advanced Materials, 2019, 31(16): 1807876

    Article  Google Scholar 

  46. Yang X, Li Y, Zhang P, Sun L, Ren X, Mi H. Hierarchical hollow carbon spheres: novel synthesis strategy, pore structure engineering and application for micro-supercapacitor. Carbon, 2020, 157: 70–79

    Article  CAS  Google Scholar 

  47. Zhou H, Zhou Y, Li L, Li Y, Liu X, Zhao P, Gao B. Amino acid protic ionic liquids: multifunctional carbon precursor for N/S codoped hierarchically porous carbon materials toward supercapacitive energy storage. ACS Sustainable Chemistry & Engineering, 2019, 7(10): 9281–9290

    Article  CAS  Google Scholar 

  48. Liu F, Gao Y, Zhang C, Huang H, Yan C, Chu X, Xu Z, Wang Z, Zhang H, Xiao X, Yang W. Highly microporous carbon with nitrogen-doping derived from natural biowaste for high performance flexible solid-state supercapacitor. Journal of Colloid and Interface Science, 2019, 548: 322–332

    Article  CAS  PubMed  Google Scholar 

  49. Qiao Y, Liu G, Xu R, Hu R, Liu L, Jiang G, Demir M, Ma P. SrFe1−xZrxO3−δ perovskite oxides as negative electrodes for supercapacitors. Electrochimica Acta, 2023, 437: 14152

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Shandong Province (Grant No. ZR2019QEM005), Project of Shandong Province Higher Educational Young Innovative Talent Introduction and Cultivation Team [Environment Function Material Innovation Team].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Liu.

Ethics declarations

Conflicts of interest There are no conflicts to declare.

Electronic Supplementary Information

11705_2023_2326_MOESM1_ESM.pdf

Size-controllable synthesis of monodispersed nitrogen-doped carbon nanospheres from polydopamine for high-rate supercapacitors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., Gao, FC., Liu, H. et al. Size-controllable synthesis of monodispersed nitrogen-doped carbon nanospheres from polydopamine for high-rate supercapacitors. Front. Chem. Sci. Eng. 17, 1788–1800 (2023). https://doi.org/10.1007/s11705-023-2326-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-023-2326-8

Keywords

Navigation