Skip to main content
Log in

Durable and recyclable BiOBr/silk fibroin-cellulose acetate composite film for efficient photodegradation of dyes under visible light irradiation

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

A stable and recyclable of BiOBr/silk fibroin-cellulose acetate composite film was prepared by blending-wet phase transformation and in situ precipitate technology. The cellulose acetate film modified by silk fibroin formed a finger-shaped porous structure, which provided a large space for the uniform growth of BiOBr nanosheets and facilitated the shuttle flow of dyes in film. The morphology, phase structure, and optical properties of the composite films were characterized using various techniques, and their photocatalytic performance for dye wastewater was evaluated under visible light irradiation. Results showed that the BiOBr/SF-CA composite film exhibited efficient photocatalytic activity with 99.9% of rhodamine B degradation rate. Moreover, the composite film maintained high catalytic stability because Bi as the active species deposited on the film showed almost no loss. Finally, the possible photocatalytic mechanisms in the BiOBr/SF-CA composite film were speculated through radical-trapping experiments and electron spin resonance testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Chen T, Liu L Z, Hu C, Huang H W. Recent advances on Bi2WO6-based photocatalysts for environmental and energy applications. Chinese Journal of Catalysis, 2021, 42(9): 1413–1438

    Article  CAS  Google Scholar 

  2. Alharbi N S, Hu B, Hayat T, Rabah S O, Alsaedi A, Zhuang L, Wang X. Efficient elimination of environmental pollutants through sorption–reduction and photocatalytic degradation using nanomaterials. Frontiers of Chemical Science and Engineering, 2020, 14(6): 1124–1135

    Article  CAS  Google Scholar 

  3. Wang H Y, Weng C C, Ren J T, Yuan Z Y. An overview and recent advances in electrocatalysts for direct seawater splitting. Frontiers of Chemical Science and Engineering, 2021, 15(6): 1408–1426

    Article  Google Scholar 

  4. Liu D, Li C, Ge J, Zhao C, Zhao Q, Zhang F, Tian N, Wu W. 3D interconnected g-C3N4 hybridized with 2D Ti3C2 MXene nanosheets for enhancing visible light photocatalytic hydrogen evolution and dye contaminant elimination. Applied Surface Science, 2022, 579: 152180

    Article  CAS  Google Scholar 

  5. Zhu L, Ding C, Zhu T, Wang Y. A review on the forward osmosis applications and fouling control strategies for wastewater treatment. Frontiers of Chemical Science and Engineering, 2021, 16(5): 661–680

    Article  Google Scholar 

  6. Patel D, Bapodra S L, Madamwar D, Desai C. Electroactive bacterial community augmentation enhances the performance of a pilot scale constructed wetland microbial fuel cell for treatment of textile dye wastewater. Bioresource Technology, 2021, 332: 125088

    Article  CAS  PubMed  Google Scholar 

  7. Kapoor R T, Danish M, Singh R S, Rafatullah M. HPS A K. Exploiting microbial biomass in treating azo dyes contaminated wastewater: mechanism of degradation and factors affecting microbial efficiency. Journal of Water Process Engineering, 2021, 43: 102255

    Article  Google Scholar 

  8. Chen W, Gu Z, Ran G, Li Q. Application of film separation technology in the treatment of leachate in China: a review. Waste Management, 2021, 121: 127–140

    Article  CAS  PubMed  Google Scholar 

  9. Huang Z, Lin M, Qiu R, Zhu J, Ruan J, Qiu R. A novel technology of recovering magnetic micro particles from spent lithium-ion batteries by ultrasonic dispersion and water flow-magnetic separation. Resources, Conservation and Recycling, 2021, 164: 105172

    Article  CAS  Google Scholar 

  10. Li J, Chen J, Ao Y, Gao X, Che H, Wang P. Prominent dual Z-scheme mechanism on phase junction WO3/CdS for enhanced visible-light-responsive photocatalytic performance on imidacloprid degradation. Separation and Purification Technology, 2022, 281: 119863

    Article  CAS  Google Scholar 

  11. Deng L, Yang Z, Li R, Chen B, Jia Q, Zhu Y, Xia Y. Graphene-reinforced metal-organic frameworks derived cobalt sulfide/carbon nanocomposites as efficient multifunctional electrocatalysts. Frontiers of Chemical Science and Engineering, 2021, 15(6): 1487–1499

    Article  CAS  Google Scholar 

  12. He R, Chen R, Luo J, Zhang S, Xu D. Fabrication of graphene quantum dots modified BiOI/PAN flexible fiber with enhanced photocatalytic activity. Acta Physico-Chimica Sinica, 2021, 37(6): 2011022

    Google Scholar 

  13. Liu D, Li H, Gao R, Zhao Q, Yang Z, Gao X, Wang Z, Zhang F, Wu W. Enhanced visible light photoelectrocatalytic degradation of tetracycline hydrochloride by I and P co-doped TiO2 photoelectrode. Journal of Hazardous Materials, 2021, 406: 124309

    Article  CAS  PubMed  Google Scholar 

  14. Sun W, Liu D, Zhang M. Application of electrode materials and catalysts in electrocatalytic treatment of dye wastewater. Frontiers of Chemical Science and Engineering, 2021, 15(6): 1427–1443

    Article  CAS  Google Scholar 

  15. Cui Y, Zeng Z Q, Zheng J F, Huang Z G, Yang J Y. Efficient photodegradation of phenol assisted by persulfate under visible light irradiation via a nitrogen-doped titanium-carbon composite. Frontiers of Chemical Science and Engineering, 2021, 15(5): 1125–1133

    Article  CAS  Google Scholar 

  16. Che H, Wang P, Chen J, Gao X, Liu B, Ao Y. Rational design of donor-acceptor conjugated polymers with high performance on peroxydisulfate activation for pollutants degradation. Applied Catalysis B: Environmental, 2022, 316: 121611

    Article  CAS  Google Scholar 

  17. Zhao G Q, Hu J, Zou J, Long X, Jiao F P. Modulation of BiOBr-based photocatalysts for energy and environmental application: a critical review. Journal of Environmental Chemical Engineering, 2022, 10(2): 107226

    Article  CAS  Google Scholar 

  18. Cai Z, Zhong J, Li J, Jin H. Oxygen vacancies enriched BiOBr with boosted photocatalytic behaviors. Inorganic Chemistry Communications, 2021, 126: 108450

    Article  CAS  Google Scholar 

  19. Wang X, Jian J, Yuan Z, Zeng J, Zhang L, Wang T, Zhou H. In situ loading of polyurethane/negative ion powder composite film with visible-light-responsive Ag3PO4@AgBr particles for photocatalytic and antibacterial applications. European Polymer Journal, 2020, 125: 109515

    Article  CAS  Google Scholar 

  20. Liu L, Hu T, Dai K, Zhang J, Liang C. A novel step-scheme BiVO4/Ag3VO4 photocatalyst for enhanced photocatalytic degradation activity under visible light irradiation. Chinese Journal of Catalysis, 2021, 42(1): 46–55

    Article  CAS  Google Scholar 

  21. Yadav M, Garg S, Chandra A, Hernadi K. Immobilization of green BiOX (X = Cl, Br and I) photocatalysts on ceramic fibers for enhanced photocatalytic degradation of recalcitrant organic pollutants and efficient regeneration process. Ceramics International, 2019, 45(14): 17715–17722

    Article  CAS  Google Scholar 

  22. Zhang Y, Shan G, Dong F, Wang C, Zhu L. Glass fiber supported BiOI thin-film fixed-bed photocatalytic reactor for water decontamination under solar light irradiation. Journal of Environmental Sciences, 2019, 80: 277–286

    Article  CAS  Google Scholar 

  23. Li W, Tian X, Li X, Liu J, Li C, Feng X, Yu Z Z. An environmental energy-enhanced solar steam evaporator derived from MXene-decorated cellulose acetate cigarette filter with ultrahigh solar steam generation efficiency. Journal of Colloid and Interface Science, 2022, 606: 748–757

    Article  CAS  PubMed  Google Scholar 

  24. Qiu X, Hu S. “Smart” materials based on cellulose: a review of the preparations, properties, and applications. Materials, 2013, 6(3): 738–781

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhang H, Liang J, Xia B, Li Y, Du S. Ionic liquid modified Pt/C electrocatalysts for cathode application in proton exchange membrane fuel cells. Frontiers of Chemical Science and Engineering, 2019, 13(4): 695–701

    Article  CAS  Google Scholar 

  26. Zhou Z, Peng X, Zhong L, Wu L, Cao X, Sun R C. Electrospun cellulose acetate supported Ag@AgCl composites with facet-dependent photocatalytic properties on degradation of organic dyes under visible-light irradiation. Carbohydrate Polymers, 2016, 136: 322–328

    Article  CAS  PubMed  Google Scholar 

  27. Liu J, Li T, Zhang H, Zhao W, Qu L, Chen S, Wu S. Electrospun strong, bioactive, and bioabsorbable silk fibroin/poly(L-lactic-acid) nanoyarns for constructing advanced nanotextile tissue scaffolds. Materials Today Bio, 2022, 14: 100243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jian J, Kuang D, Wang X, Zhou H, Gao H, Sun W, Yuan Z, Zeng J, You K, Luo H. Highly dispersed Co/SBA-15 mesoporous materials as efficient and stable catalyst for partial oxidation of cyclohexane with molecular oxygen. Materials Chemistry and Physics, 2020, 246: 122814

    Article  CAS  Google Scholar 

  29. Jian J, Yang D, Liu P, You K, Sun W, Zhou H, Yuan Z, Ai Q, Luo H. Solvent-free partial oxidation of cyclohexane to KA oil over hydrotalcite-derived Cu-MgAlO mixed metal oxides. Chinese Journal of Chemical Engineering, 2022, 42: 269–276

    Article  CAS  Google Scholar 

  30. Wang X H, Sui Y G, Jian J, Yuan Z Q, Zeng J X, Zhang L, Wang T F, Zhou H. Ag@AgCl nanoparticles in-situ deposited cellulose acetate/silk fibroin composite film for photocatalytic and antibacterial applications. Cellulose, 2020, 27(13): 7721–7737

    Article  CAS  Google Scholar 

  31. Zheng X, Feng L, Dou Y, Guo H, Liang Y, Li G, He J, Liu P, He J. High carrier separation efficiency in morphology-controlled BiOBr/C Schottky junctions for photocatalytic overall water splitting. ACS Nano, 2021, 15(8): 13209–13219

    Article  CAS  Google Scholar 

  32. Wang Y X, Dai L H, Qu K, Qin L, Zhuang L Z, Yang H, Xu Z. Novel Ag-AgBr decorated composite membrane for dye rejection and photodegradation under visible light. Frontiers of Chemical Science and Engineering, 2021, 15(4): 892–901

    Article  CAS  Google Scholar 

  33. Wang X J, Zhao Y, Li F T, Dou L J, Li Y P, Zhao J, Hao Y J. A chelation strategy for in-situ constructing surface oxygen vacancy on {001} facets exposed BiOBr nanosheets. Scientific Reports, 2016, 6(1): 1–11

    Google Scholar 

  34. Qu J, Du Y, Ji P, Li Z, Jiang N, Sun X, Xue L, Li H, Sun G. Fe, Cu co-doped BiOBr with improved photocatalytic ability of pollutants degradation. Journal of Alloys and Compounds, 2021, 881: 160391

    Article  CAS  Google Scholar 

  35. El-Sheikh S M, Azzam A B, Geioushy R A, Farida M, Salah B A. Visible-light-driven 3D hierarchical Bi2S3/BiOBr hybrid structure for superior photocatalytic Cr(VI) reduction. Journal of Alloys and Compounds, 2021, 857: 157513

    Article  CAS  Google Scholar 

  36. Ryu J H, Lee H, Kim Y J, Kang Y S, Kim H S. Facilitated olefin transport by reversible olefin coordination to silver ions in a dry cellulose acetate film. Chemistry, 2001, 7(7): 1525–1529

    Article  CAS  PubMed  Google Scholar 

  37. Shaikh W A, Islam R U, Chakraborty S. Stable silver nanoparticle doped mesoporous biochar-based nanocomposite for efficient removal of toxic dyes. Journal of Environmental Chemical Engineering, 2021, 9(1): 104982

    Article  CAS  Google Scholar 

  38. Sionkowska A, Planecka A. The influence of UV radiation on silk fibroin. Polymer Degradation & Stability, 2011, 96(4): 523–528

    Article  CAS  Google Scholar 

  39. Cheng Y, Chen J, Wang P, Liu W, Che H, Gao X, Liu B, Ao Y. Interfacial engineering boosting the piezocatalytic performance of Z-scheme heterojunction for carbamazepine degradation: mechanism, degradation pathway and DFT calculation. Applied Catalysis B: Environmental, 2022, 317: 121793

    Article  CAS  Google Scholar 

  40. Fu S, Yuan W, Liu X, Yan Y, Liu H, Li L, Zhao F, Zhou J. A novel 0D/2D WS2/BiOBr heterostructure with rich oxygen vacancies for enhanced broad-spectrum photocatalytic performance. Journal of Colloid and Interface Science, 2020, 569: 150–163

    Article  CAS  PubMed  Google Scholar 

  41. Zhou H, Qu W, Wu M, Yuan Z, Jian J, Zhang L, Huang T. Synthesis of novel BiOBr/Bio-veins composite for photocatalytic degradation of pollutants under visible-light. Surfaces and Interfaces, 2022, 28: 101668

    Article  CAS  Google Scholar 

  42. Liu C, Mao S, Shi M, Hong X, Wang D, Wang F, Chen Q. Enhanced photocatalytic degradation performance of BiVO4/BiOBr through combining Fermi level alteration and oxygen defect engineering. Chemical Engineering Journal, 2022, 449: 137757

    Article  CAS  Google Scholar 

  43. Cui W, An W, Liu L, Hu J, Liang Y. Novel Cu2O quantum dots coupled flower-like BiOBr for enhanced photocatalytic degradation of organic contaminant. Journal of Hazardous Materials, 2014, 280: 417–427

    Article  CAS  PubMed  Google Scholar 

  44. Quan H, Qian K, Xuan Y, Lou L, Yu K, Liu S. Superior performance in visible-light-driven hydrogen evolution reaction of three-dimensionally ordered macroporous SrTiO3 decoaaeed with ZnxCd1 −xS. Frontiers of Chemical Science and Engineering, 2021, 15(6): 1561–1571

    Article  CAS  Google Scholar 

  45. Bera G, Mishra A, Mal P, Das P, Padmaja G, Rambabu P, Turpu G R. Methylene blue dye degradation by bulk, nano FeVO4 and rGO-FeVO4. In AIP Conference Proceedings, 2020, 2220(1): 080070

    Article  CAS  Google Scholar 

  46. Gao M, Zhang D, Pu X, Li H, Lv D, Zhang B, Shao X. Facile hydrothermal synthesis of Bi/BiOBr composites with enhanced visible-light photocatalytic activities for the degradation of rhodamine B. Separation and Purification Technology, 2015, 154: 211–216

    Article  CAS  Google Scholar 

  47. Sakthivel S, Neppolian B, Shankar M V, Arabindoo B, Palanichamy M, Murugesan V. Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Solar Energy Materials and Solar Cells, 2003, 77(1): 65–82

    Article  CAS  Google Scholar 

  48. Tang J, Wang J, Tang L, Feng C, Zhu X, Yi Y, Ren X. Preparation of floating porous g-C3N4 photocatalyst via a facile one-pot method for efficient photocatalytic elimination of tetracycline under visible light irradiation. Chemical Engineering Journal, 2022, 430: 132669

    Article  CAS  Google Scholar 

  49. Guo J, Ma D, Sun F, Zhuang G, Wang Q, Al-Enizi A M, Ma S. Substituent engineering in g-C3N4/COF heterojunctions for rapid charge separation and high photo-redox activity. Science China Chemistry, 2022, 65(9): 1704–1709

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the financial support by the National Natural Science Foundation of China (Grant No. 22202068), Natural Science Foundation in Hunan Province (Grant No. 2021JJ30239), Natural Science Foundation for Distinguished Young Scholars in Hunan Province (Grant No. 2020JJ2014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Jian, Yusheng Zhang or Hu Zhou.

Ethics declarations

Conflicts of interest There are no conflicts to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Jian, J., Dan, Y. et al. Durable and recyclable BiOBr/silk fibroin-cellulose acetate composite film for efficient photodegradation of dyes under visible light irradiation. Front. Chem. Sci. Eng. 17, 1765–1775 (2023). https://doi.org/10.1007/s11705-023-2323-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-023-2323-y

Keywords

Navigation