Skip to main content
Log in

Oxygen-deficient MoOx/Ni3S2 heterostructure grown on nickel foam as efficient and durable self-supported electrocatalysts for hydrogen evolution reaction

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

High-performance and ultra-durable electrocatalysts are vital for hydrogen evolution reaction (HER) during water splitting. Herein, by one-pot solvothermal method, MoOx/Ni3S2 spheres comprising Ni3S2 nanoparticles inside and oxygen-deficient amorphous MoOx outside in situ grow on Ni foam (NF), to assembly the heterostructure composites of MoOx/Ni3S2/NF. By adjusting volume ratio of the solvents of ethanol to water, the optimized MoOx/Ni3S2/NF-11 exhibits the best HER performance, requiring an extremely low overpotential of 76 mV to achieve the current density of 10 mA·cm−2 (η10 = 76 mV) and an ultra-small Tafel slope of 46 mV·dec−1 in 0.5 mol·L−1 H2SO4. More importantly, the catalyst shows prominent high catalytic stability for HER (> 100 h). The acid-resistant MoOx wraps the inside Ni3S2/NF to ensure the high stability of the catalyst under acidic conditions. Density functional theory calculations confirm that the existing oxygen vacancy and MoOx/Ni3S2 heterostructure are both beneficial to the reduced Gibbs free energy of hydrogen adsorption (∣ΔGH*∣) over Mo sites, which act as main active sites. The heterostructure effectively decreases the formation energy of O vacancy, leading to surface reconstruction of the catalyst, further improving HER performance. The MoOx/Ni3S2/NF is promising to serve as a highly effective and durable electrocatalyst toward HER.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zou X, Zhang Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chemical Society Reviews, 2015, 44(15): 5148–5180

    Article  CAS  PubMed  Google Scholar 

  2. Turner J A. Sustainable hydrogen production. Science, 2004, 305(5686): 972–974

    Article  CAS  PubMed  Google Scholar 

  3. Holladay J D, Hu J, King D L, Wang Y. An overview of hydrogen production technologies. Catalysis Today, 2009, 139(4): 244–260

    Article  CAS  Google Scholar 

  4. Chen W F, Muckerman J T, Fujita E. Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. Chemical Communications, 2013, 49(79): 8896–8909

    Article  CAS  PubMed  Google Scholar 

  5. Zhang J, Wang T, Liu P, Liao Z, Liu S, Zhuang X, Chen M, Zschech E, Feng X. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nature Communications, 2017, 8(1): 15437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stamenkovic V R, Mun B S, Arenz M, Mayrhofer K J J, Lucas C A, Wang G F, Ross P N, Markovic N M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nature Materials, 2007, 6(3): 241–247

    Article  CAS  PubMed  Google Scholar 

  7. Wang K W, She X L, Chen S, Liu H L, Li D H, Wang Y, Zhang H W, Yang D J, Yao X D. Boosting hydrogen evolution via optimized hydrogen adsorption at the interface of CoP3 and Ni2P. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6(14): 5560–5565

    Article  CAS  Google Scholar 

  8. Lu W, Song Y, Dou M, Ji J, Wang F. Ni3S2@MoO3 core/shell arrays on Ni foam modified with ultrathin CdS layer as a superior electrocatalyst for hydrogen evolution reaction. Chemical Communications, 2018, 54(6): 646–649

    Article  CAS  PubMed  Google Scholar 

  9. Wang X, Ma W, Ding C, Xu Z, Wang H, Zong X, Li C. Amorphous multi-elements electrocatalysts with tunable bifunctionality toward overall water splitting. ACS Catalysis, 2018, 8(11): 9926–9935

    Article  CAS  Google Scholar 

  10. Liang Q, Jin H, Wang Z, Xiong Y, Yuan S, Zeng X, He D, Mu S. Metal-organic frameworks derived reverse-encapsulation Co-NC@Mo2C complex for efficient overall water splitting. Nano Energy, 2019, 57: 746–752

    Article  CAS  Google Scholar 

  11. Li L, Zhang T, Yan J, Cai X, Liu S. P doped MoO3−x nanosheets as efficient and stable electrocatalysts for hydrogen evolution. Small, 2017, 13(25): 1700441

    Article  Google Scholar 

  12. Sinaim H, Ham D J, Lee J S, Phuruangrat A, Thongtem S, Thongtem T. Free-polymer controlling morphology of α-MoO3 nanobelts by a facile hydrothermal synthesis, their electrochemistry for hydrogen evolution reactions and optical properties. Journal of Alloys and Compounds, 2012, 516: 172–178

    Article  CAS  Google Scholar 

  13. Zhu Y H, Yao Y, Luo Z, Pan C Q, Yang J, Fang Y R, Deng H T, Liu C X, Tan Q, Liu F D, Guo Y. Nanostructured MoO3 for efficient energy and environmental catalysis. Molecules, 2020, 25(1): 26

    Google Scholar 

  14. Li J, Cheng Y, Zhang J, Fu J, Yan W, Xu Q. Confining Pd nanoparticles and atomically dispersed Pd into defective MoO3 nanosheet for enhancing electro- and photocatalytic hydrogen evolution performances. ACS Applied Materials & Interfaces, 2019, 11(31): 27798–27804

    Article  CAS  Google Scholar 

  15. Xue X, Zhang J, Saana I A, Sun J, Xu Q, Mu S. Rational inert-basal-plane activating design of ultrathin 1T′ phase MoS2 with a MoO3 heterostructure for enhancing hydrogen evolution performances. Nanoscale, 2018, 10(35): 16531–16538

    Article  CAS  PubMed  Google Scholar 

  16. Liu P T, Zhu J Y, Zhang J Y, Xi P X, Tao K, Gao D Q, Xue D S. P dopants triggered new basal plane active sites and enlarged interlayer spacing in MoS2 nanosheets toward electrocatalytic hydrogen evolution. ACS Energy Letters, 2017, 2(4): 745–752

    Article  CAS  Google Scholar 

  17. Sadhanala H K, Harika V K, Penki T R, Aurbach D, Gedanken A. Ultrafine ruthenium oxide nanoparticles supported on molybdenum oxide nanosheets as highly efficient electrocatalyst for hydrogen evolution in acidic medium. ChemCatChem, 2019, 11(5): 1495–1502

    Article  CAS  Google Scholar 

  18. Lim K J H, Yilmaz G, Lim Y F, Ho G W. Multi-compositional hierarchical nanostructured Ni3S2@MoSx./NiO electrodes for enhanced electrocatalytic hydrogen generation and energy storage. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6(41): 20491–20499

    Article  CAS  Google Scholar 

  19. Kou T, Smart T, Yao B, Chen I, Thota D, Ping Y, Li Y. Theoretical and experimental insight into the effect of nitrogen doping on hydrogen evolution activity of Ni3S2 in alkaline medium. Advanced Energy Materials, 2018, 8(19): 1703538

    Article  Google Scholar 

  20. Feng L L, Yu G, Wu Y, Li G D, Li H, Sun Y, Asefa T, Chen W, Zou X. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. Journal of the American Chemical Society, 2015, 137(44): 14023–14026

    Article  CAS  PubMed  Google Scholar 

  21. Chang Y H, Lin C T, Chen T Y, Hsu C L, Lee Y H, Zhang W, Wei K H, Li L J. Highly efficient electrocatalytic hydrogen production by MoSx grown on graphene-protected 3D Ni foams. Advanced Materials, 2013, 25(5): 756–760

    Article  CAS  PubMed  Google Scholar 

  22. Tang C, Pu Z, Liu Q, Asiri A M, Luo Y, Sun X. Ni3S2 nanosheets array supported on Ni foam: a novel efficient three-dimensional hydrogen-evolving electrocatalyst in both neutral and basic solutions. International Journal of Hydrogen Energy, 2015, 40(14): 4727–4732

    Article  CAS  Google Scholar 

  23. Cao J, Zhou J, Zhang Y, Wang Y, Liu X. Dominating role of aligned MoS2/Ni3S2 nanoarrays supported on three-dimensional Ni foam with hydrophilic interface for highly enhanced hydrogen evolution reaction. ACS Applied Materials & Interfaces, 2018, 10(2): 1752–1760

    Article  CAS  Google Scholar 

  24. Yang Y, Yao H, Yu Z, Islam S M, He H, Yuan M, Yue Y, Xu K, Hao W, Sun G, Li H, Ma S, Zapol P, Kanatzidis M G. Hierarchical nanoassembly of MoS2/Co9S8/Ni3S2/Ni as a highly efficient electrocatalyst for overall water splitting in a wide pH range. Journal of the American Chemical Society, 2019, 141(26): 10417–10430

    Article  CAS  PubMed  Google Scholar 

  25. Li T T, Zuo Y P, Lei X M, Li N, Liu J W, Han H Y. Regulating the oxidation degree of nickel foam: a smart strategy to controllably synthesize active Ni3S2 nanorod/nanowire arrays for high-performance supercapacitors. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(21): 8029–8040

    Article  CAS  Google Scholar 

  26. Tang T, Jiang W J, Niu S, Liu N, Luo H, Chen Y Y, Jin S F, Gao F, Wan L J, Hu J S. Electronic and morphological dual modulation of cobalt carbonate hydroxides by Mn doping toward highly efficient and stable bifunctional electrocatalysts for overall water splitting. Journal of the American Chemical Society, 2017, 139(24): 8320–8328

    Article  CAS  PubMed  Google Scholar 

  27. He W, Wang C, Li H, Deng X, Xu X, Zhai T. Ultrathin and porous Ni3S2/CoNi2S4 3D-network structure for superhigh energy density asymmetric supercapacitors. Advanced Energy Materials, 2017, 7(21): 1700983

    Article  Google Scholar 

  28. Yang J, Zhang F J, Wang X, He D S, Wu G, Yang Q H, Hong X, Wu Y, Li Y D. Porous molybdenum phosphide nano-octahedrons derived from confined phosphorization in UIO-66 for efficient hydrogen evolution. Angewandte Chemie International Edition, 2016, 55(41): 12854–12858

    Article  CAS  PubMed  Google Scholar 

  29. Weber T, Muijsers J C, Niemantsverdriet J W. Structure of amorphous MoS3. Journal of Physical Chemistry, 1995, 99(22): 9194–9200

    Article  CAS  Google Scholar 

  30. Li L D, Yan J Q, Wang T, Zhao Z J, Zhang J, Gong J L, Guan N J. Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production. Nature Communications, 2015, 6(1): 10

    Article  Google Scholar 

  31. Li J, Cheng Y, Zhang J, Fu J, Yan W, Xu Q. Confining Pd Nanoparticles and atomically dispersed Pd into defective MoO3 nanosheet for enhancing electro- and photocatalytic hydrogen evolution performances. ACS Applied Materials & Interfaces, 2019, 11(31): 27798–27804

    Article  CAS  Google Scholar 

  32. Kang Q, Cao J Y, Zhang Y J, Liu L Q, Xu H, Ye J H. Reduced TiO2 nanotube arrays for photoelectrochemical water splitting. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2013, 1(18): 5766–5774

    Article  CAS  Google Scholar 

  33. Yan J Q, Zhang Y X, Liu S Z, Wu G J, Li L D, Guan N J. Facile synthesis of an iron doped rutile TiO2 photocatalyst for enhanced visible-light-driven water oxidation. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(43): 21434–21438

    Article  CAS  Google Scholar 

  34. Xie F, Wu H, Mou J, Lin D, Xu C, Wu C, Sun X. Ni3N@Ni-Ci nanoarray as a highly active and durable non-noble-metal electrocatalyst for water oxidation at near-neutral pH. Journal of Catalysis, 2017, 356: 165–172

    Article  CAS  Google Scholar 

  35. Zhou W, Wu X J, Cao X, Huang X, Tan C, Tian J, Liu H, Wang J, Zhang H. Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution. Energy & Environmental Science, 2013, 6(10): 2921

    Article  CAS  Google Scholar 

  36. Chia X, Sutrisnoh N A A, Pumera M. Tunable Pt-MoSx hybrid catalysts for hydrogen evolution. ACS Applied Materials & Interfaces, 2018, 10(10): 8702–8711

    Article  CAS  Google Scholar 

  37. Kuang P Y, Tong T, Fan K, Yu J G. In situ fabrication of Ni-Mo bimetal sulfide hybrid as an efficient electrocatalyst for hydrogen evolution over a wide pH range. ACS Catalysis, 2017, 7(9): 6179–6187

    Article  CAS  Google Scholar 

  38. Wang B, Huang H, Sun T, Yan P, Isimjan T T, Tian J, Yang X. Dissolution reconstruction of electron-transfer enhanced hierarchical NiSx-MoO2 nanosponges as a promising industrialized hydrogen evolution catalyst beyond Pt/C. Journal of Colloid and Interface Science, 2020, 567: 339–346

    Article  CAS  PubMed  Google Scholar 

  39. Cheng Z, Abernathy H, Liu M L. Raman spectroscopy of nickel sulfide Ni3S2. Journal of Physical Chemistry C, 2007, 111(49): 17997–18000

    Article  CAS  Google Scholar 

  40. Li Z, Ma J, Zhang B, Song C, Wang D. Crystal phase- and morphology-controlled synthesis of MoO3 materials. CrystEngComm, 2017, 19(11): 1479–1485

    Article  CAS  Google Scholar 

  41. Qi K, Yu S S, Wang Q Y, Zhang W, Fan J C, Zheng W T, Cui X Q. Decoration of the inert basal plane of defect-rich MoS2 with Pd atoms for achieving Pt-similar HER activity. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(11): 4025–4031

    Article  CAS  Google Scholar 

  42. Huang H L, Huang J Y, Liu W P, Fang Y P, Liu Y. Ultradispersed and single-layered MoS2 nanoflakes strongly coupled with graphene: an optimized structure with high kinetics for the hydrogen evolution reaction. ACS Applied Materials & Interfaces, 2017, 9(45): 39380–39390

    Article  CAS  Google Scholar 

  43. Xiong J, Li J, Shi J W, Zhang X L, Suen N T, Liu Z, Huang Y J, Xu G X, Cai W W, Lei X R, Feng L, Yang Z, Huang L, Cheng H. In situ engineering of double-phase interface in Mo/Mo2C heteronanosheets for boosted hydrogen evolution reaction. ACS Energy Letters, 2018, 3(2): 341–348

    Article  CAS  Google Scholar 

  44. Manikandan A, Ilango P R, Chen C W, Wang Y C, Shih Y C, Lee L, Wang Z M M, Ko H, Chueh Y L. A superior dye adsorbent towards the hydrogen evolution reaction combining active sites and phase-engineering of (1T/2H) MoS2/MoO3 hybrid heterostructured nanoflowers. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6(31): 15320–15329

    Article  CAS  Google Scholar 

  45. Huang C, Pi C R, Zhang X M, Ding K, Qin P, Fu J J, Peng X, Gao B, Chu P K, Huo K F. In situ synthesis of MoP nanoflakes intercalated N-doped graphene nanobelts from MoO3-amine hybrid for high-efficient hydrogen evolution reaction. Small, 2018, 14(25): 7

    Google Scholar 

  46. Wu H B, Xia B Y, Yu L, Yu X Y, Lou X W. Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production. Nature Communications, 2015, 6(1): 8

    Google Scholar 

  47. Chen X, Liu G, Zheng W, Feng W, Cao W, Hu W, Hu P. Vertical 2D MoO2/MoSe2 core-shell nanosheet arrays as high-performance electrocatalysts for hydrogen evolution reaction. Advanced Functional Materials, 2016, 26(46): 8537–8544

    Article  CAS  Google Scholar 

  48. Zhu L F, Liu L J, Huang G M, Zhao Q. Hydrogen evolution over N-doped CoS2 nanosheets enhanced by superaerophobicity and electronic modulation. Applied Surface Science, 2020, 504: 144490

    Article  CAS  Google Scholar 

  49. He L, Zhang W, Mo Q, Huang W, Yang L, Gao Q. Molybdenum carbide-oxide heterostructures: in situ surface reconfiguration toward efficient electrocatalytic hydrogen evolution. Angewandte Chemie International Edition, 2020, 59(9): 3544–3548

    Article  CAS  PubMed  Google Scholar 

  50. Yilmaz G, Yang T, Du Y, Yu X, Feng Y, Shen L, Ho G. Stimulated electrocatalytic hydrogen evolution activity of MOF-derived MoS2 basal domains via charge injection through surface functionalization and heteroatom doping. Advancement of Science, 2019, 6(15): 1900140

    Google Scholar 

Download references

Acknowledgements

Experimental work is supported by the National Natural Science Foundation of China (Grant No. 22176017), Scientific Research Project of the Ningxia Higher Education Department of China (Grant No. NGY2020034) and CAS “Light of West China Program (Grant No. XAB2020YW16)”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huiqin Yao, Rong Liu, Cheng Li or Shulan Ma.

Electronic Supplementary Material

11705_2022_2228_MOESM1_ESM.pdf

Oxygen-deficient MoOx/Ni3S2 heterostructure grown on nickel foam as efficient and durable self-supported electrocatalysts for hydrogen evolution reaction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Z., Yan, H., Wang, C. et al. Oxygen-deficient MoOx/Ni3S2 heterostructure grown on nickel foam as efficient and durable self-supported electrocatalysts for hydrogen evolution reaction. Front. Chem. Sci. Eng. 17, 437–448 (2023). https://doi.org/10.1007/s11705-022-2228-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2228-1

Keywords

Navigation