Skip to main content
Log in

Construction of defect-containing UiO-66/MoSe2 heterojunctions with superior photocatalytic performance for wastewater treatment and mechanism insight

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Metal—organic frameworks are recognized as promising multifunctional materials, especially metal—organic framework-based photocatalysts, which are considered to be ideal photocatalytic materials. Herein, a new type of UiO-66/MoSe2 composite was prepared using the solvothermal method. The optimum composite was selected by adjusting the mass ratio of UiO-66 and MoSe2. X-ray diffraction analysis showed that the mass ratio influenced the crystal plane exposure rate of the composite, which may have affected its photocatalytic performance. The composite is composed of ultra-thin flower-like MoSe2 that wrapped around cubic UiO-66, a structure that increases the abundance of active sites for reactions and is more conducive to the separation of carriers. The photocatalytic properties of the composite were evaluated by measuring the degradation rate of Rhodamine B and the catalyst’s ability to reduce Cr(VI)-containing wastewater under visible light irradiation. Rhodamine B was decolorized completely in 120 min, and most of the Cr(VI) was reduced within 150 min. The photochemical mechanism of the complex was studied in detail. The existence of Mo6+ and oxygen vacancies, in addition to the Z-type heterojunction promote the separation of electrons and holes, which enhances the photocatalytic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu Y, Li C, Tian Z, Sun J. Solar-driven integrated energy systems: state of the art and challenges. Journal of Power Sources, 2020, 478(2): 28762

    Google Scholar 

  2. Park E J, Jo H J, Kim H J, Cho K, Jung J. Effects of gamma-ray treatment on wastewater toxicity from a rubber products factory. Journal of Radioanalytical and Nuclear Chemistry, 2008, 277(3): 619–624

    Article  CAS  Google Scholar 

  3. Landry K A, Boyer T H. Diclofenac removal in urine using strong-base anion exchange polymer resins. Water Research, 2013, 47(17): 6432–6444

    Article  CAS  PubMed  Google Scholar 

  4. Xiang Q, Yu J, Jaroniec M. Graphene-based semiconductor photocatalysts. Chemical Society Reviews, 2012, 41(2): 782–796

    Article  CAS  PubMed  Google Scholar 

  5. Dong S, Zhao Y, Yang J, Liu X, Li W, Zhang L, Wu Y, Sun J, Feng J, Zhu Y. Visible-light responsive PDI/rGO composite film for the photothermal catalytic degradation of antibiotic wastewater and interfacial water evaporation. Applied Catalysis B: Environmental, 2021, 291: 120127

    Article  CAS  Google Scholar 

  6. Dong S, Zhao Y, Yang J, Li W, Luo W, Li S, Liu X, Guo H, Yu C, Sun J, Feng J, Zhu Y. Solar water recycling of carbonaceous aerogel in open and colsed systems for seawater desalination and wastewater purification. Chemical Engineering Journal, 2022, 431:133824

    Article  CAS  Google Scholar 

  7. Jian S, Tian Z, Hu J, Zhang K, Zhang L, Duan G, Yang W, Jiang S. Enhanced visible light photocatalytic efficiency of La-doped ZnO nanofibers via electrospinning-calcination technology. Advanced Powder Materials, 2022, 1(2): 100004

    Article  Google Scholar 

  8. Dong S, Liu X, Tian G, Wang Y, Jin G, Zhao Y, Sun J, Fan M. Surface oxygen vacancies modified Bi2MoO6 dubble-layer spheres: enhanced visible LED light photocatalytic activity for ciprofloxacin degradation. Journal of Alloys and Compounds, 2022, 892: 162217

    Article  CAS  Google Scholar 

  9. Zhou T, Sang Y, Sun Y, Wu C, Wang X, Tang X, Zhang T, Wang H, Xie C, Zeng D. Gas adsorption at metal sites for enhancing gas sensing performance of ZnO@ZIF-71 nanorod arrays. Langmuir, 2019, 35(9): 3248–3255

    Article  CAS  PubMed  Google Scholar 

  10. Suresh K, Matzger A J. Enhanced drug delivery by dissolution of amorphous drug encapsulated in a water unstable metal-organic framework (MOF). Angewandte Chemie International Edition, 2019, 58(47): 16790–16794

    Article  CAS  PubMed  Google Scholar 

  11. Yan B. Photofunctional MOF-based hybrid materials for the chemical sensing of biomarkers. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2019, 7(27): 8155–8175

    Article  CAS  Google Scholar 

  12. Guo J, Qin Y, Zhu Y, Zhang X, Long C, Zhao M, Tang Z. Metal-organic frameworks as catalytic selectivity regulators for organic transformations. Chemical Society Reviews, 2021, 50(9): 5366–5396

    Article  CAS  PubMed  Google Scholar 

  13. Li Z, Guo J, Wan Y, Qin Y, Zhao M. Combining metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs): emerging opportunities for new materials and applications. Nano Research, 2022, 15(4): 3514–3532

    Article  Google Scholar 

  14. Qin Y, Wan Y, Guo J, Zhao M. Two-dimensional metal-organic framework nanosheet composites: preparations and applications. Chinese Chemical Letters, 2022, 33(2): 693–702

    Article  CAS  Google Scholar 

  15. Guo J, Wan Y, Zhu Y, Zhao M, Tang Z. Advanced photocatalysts based on metal nanoparticle/metal-organic framework composites. Nano Research, 2021, 14(7): 2037–2052

    Article  CAS  Google Scholar 

  16. Wang S, Guan B Y, Lou X W. Rationally designed hierarchical N-doped carbon@NiCo2O4 double-shelled nanoboxes for enhanced visible light CO2 reduction. Energy & Environmental Science, 2018, 11(2): 306–310

    Article  CAS  Google Scholar 

  17. Wang C C, Du X D, Li J, Guo X X, Wang P, Zhang J. Photocatalytic Cr(VI) reduction in metal-organic frameworks: a mini-review. Applied Catalysis B: Environmental, 2016, 193: 198–216

    Article  CAS  Google Scholar 

  18. Shen L, Wu W, Liang R, Lin R, Wu L. Highly dispersed palladium nanoparticles anchored on UiO-66(NH2) metal-organic framework as a reusable and dual functional visible-light-driven photocatalyst. Nanoscale, 2013, 5(19): 9374–9382

    Article  CAS  PubMed  Google Scholar 

  19. Liu B, Liu X, Liu J, Feng C, Li Z, Li C, Gong Y, Pan L, Xu S, Sun C Q. Efficient charge separation between UiO-66 and ZnIn2S4 flowerlike 3D microspheres for photoelectronchemical properties. Applied Catalysis B: Environmental, 2018, 226: 234–241

    Article  CAS  Google Scholar 

  20. Sha Z, Chan H S, Wu J. Ag2CO3/UiO-66(Zr) composite with enhanced visible-light promoted photocatalytic activity for dye degradation. Journal of Hazardous Materials, 2015, 299: 132–140

    Article  CAS  PubMed  Google Scholar 

  21. Cao J, Yang Z H, Xiong W P, Zhou Y Y, Peng Y R, Li X, Zhou C Y, Xu R, Zhang Y R. One-step synthesis of Co-doped UiO-66 nanoparticle with enhanced removal efficiency of tetracycline: simultaneous adsorption and photocatalysis. Chemical Engineering Journal, 2018, 353: 126–137

    Article  CAS  Google Scholar 

  22. Shen L, Luo M, Liu Y, Liang R, Jing F, Wu L. Noble-metal-free MoS2 co-catalyst decorated UiO-66/CdS hybrids for efficient photocatalytic H2 production. Applied Catalysis B: Environmental, 2015, 166: 445–453

    Article  Google Scholar 

  23. Wu Y, Xu M, Chen X, Yang S, Wu H, Pan J, Xiong X. CTAB-assisted synthesis of novel ultrathin MoSe2 nanosheets perpendicular to graphene for the adsorption and photodegradation of organic dyes under visible light. Nanoscale, 2016, 8(1): 440–450

    Article  CAS  PubMed  Google Scholar 

  24. Dai C, Qing E, Li Y, Zhou Z, Yang C, Tian X, Wang Y. Novel MoSe2 hierarchical microspheres for applications in visible-light-driven advanced oxidation processes. Nanoscale, 2015, 7(47): 19970–19976

    Article  CAS  PubMed  Google Scholar 

  25. Ren Z, Liu X, Chu H, Yu H, Xu Y, Zheng W, Lei W, Chen P, Li J, Li C. Carbon quantum dots decorated MoSe2 photocatalyst for Cr(VI) reduction in the UV-vis-NIR photon energy range. Journal of Colloid and Interface Science, 2017, 488: 190–195

    Article  CAS  PubMed  Google Scholar 

  26. Chu H, Liu X, Liu B, Zhu G, Lei W, Du H, Liu J, Li J, Li C, Sun C. Hexagonal 2H-MoSe2 broad spectrum active photocatalyst for Cr(VI) reduction. Scientific Reports, 2016, 6(1): 35304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wu M H, Lee J T, Chung Y J, Srinivaas M, Wu J M. Ultrahigh efficient degradation activity of single- and few-layered MoSe2 nanoflowers in dark by piezo-catalyst effect. Nano Energy, 2017, 40: 369–375

    Article  CAS  Google Scholar 

  28. Zhang Y, Gong Q, Li L, Yang H, Li Y, Wang Q. MoSe2 porous microspheres comprising monolayer flakes with high electrocatalytic activity. Nano Research, 2015, 8(4): 1108–1115

    Article  CAS  Google Scholar 

  29. Wang M, Peng Z, Qian J, Li H, Zhao Z, Fu X. Highly efficient solar-driven photocatalytic degradation on environmental pollutants over a novel C fibers@MoSe2 nanoplates core-shell composite. Journal of Hazardous Materials, 2018, 347: 403–411

    Article  CAS  PubMed  Google Scholar 

  30. Cavka J H, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud K P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. Journal of the American Chemical Society, 2008, 130(42): 13850–13851

    Article  PubMed  Google Scholar 

  31. Wang Y, Zhao J, Chen Z, Zhang F, Guo W, Lin H, Qu F. Construction of Z-scheme MoSe2/CdSe hollow nanostructure with enhanced full spectrum photocatalytic activity. Applied Catalysis B: Environmental, 2019, 244: 76–86

    Article  CAS  Google Scholar 

  32. Dong W, Wang D, Wang H, Li M, Chen F, Jia F, Yang Q, Li X, Yuan X, Gong J, Li H, Ye J. Facile synthesis of In2S3/UiO-66 composite with enhanced adsorption performance and photocatalytic activity for the removal of tetracycline under visible light irradiation. Journal of Colloid and Interface Science, 2019, 535: 444–457

    Article  CAS  PubMed  Google Scholar 

  33. Yu Y, Nam G H, He Q, Wu X J, Zhang K, Yang Z, Chen J, Ma Q, Zhao M, Liu Z, Ran F R, Wang X, Li H, Huang X, Li B, Xiong Q, Zhang Q, Liu Z, Gu L, Du Y, Huang W, Zhang H. High phase-purity 1T′-MoS2- and 1T′-MoSe2-layered crystals. Nature Chemistry, 2018, 10(6): 638–643

    Article  CAS  PubMed  Google Scholar 

  34. Yi J, Li H, Gong Y, She X, Song Y, Xu Y, Deng J, Yuan S, Xu H, Li H. Phase and interlayer effect of transition metal dichalcogenide cocatalyst toward photocatalytic hydrogen evolution: the case of MoSe2. Applied Catalysis B: Environmental, 2019, 243: 330–336

    Article  CAS  Google Scholar 

  35. Qu Y, Medina H, Wang S W, Wang Y C, Chen C W, Su T Y, Manikandan A, Wang K, Shih Y C, Chang J W, Kuo H C, Lee C Y, Lu S Y, Shen G, Wang Z M, Chueh Y L. Wafer scale phase-engineered 1T-and 2H-MoSe2/Mo core-shell 3D-hierarchical nanostructures toward efficient electrocatalytic hydrogen evolution reaction. Advanced Materials, 2016, 28(44): 9831–9838

    Article  CAS  PubMed  Google Scholar 

  36. Gopalakrishnan D, Damien D, Shaijumon M M. MoS2 quantum dot-interspersed exfoliated MoS2 nanosheets. ACS Nano, 2014, 8(5): 5297–5303

    Article  CAS  PubMed  Google Scholar 

  37. Liu M, Li C, Zeng Q, Du X, Gao L, Li S, Zhai Y. Study on removal of elemental mercury over MoO3-CeO2/cylindrical activated coke in the presence of SO2 by Hg-temperature-programmed desorption. Chemical Engineering Journal, 2019, 371: 666–678

    Article  CAS  Google Scholar 

  38. Du C, Nie S, Zhang C, Wang T, Wang S, Zhang J, Yu C, Lu Z, Dong S, Feng J, Liu H, Sun J. Dual-functional Z-scheme CdSe/Se/BiOBr photocatalyst: generation of hydrogen peroxide and efficient degradation of ciprofloxacin. Journal of Colloid and Interface Science, 2022, 606(2): 1715–1728

    Article  CAS  PubMed  Google Scholar 

  39. Nie X, Wang J, Duan W, Zhao Z, Li L, Zhang Z. Effects of different crystallization methods on photocatalytic performance of TiO2 nanotubes. Applied Physics A: Materials Science & Processing, 2021, 127(11): 879

    Article  CAS  Google Scholar 

  40. Zhang N, Liu S, Fu X, Xu Y J. Fabrication of coenocytic Pd@CdS nanocomposite as a visible light photocatalyst for selective transformation under mild conditions. Journal of Materials Chemistry, 2012, 22(11): 5042–5052

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants Nos. 22076039, and 22176051), Natural Science Foundation of Henan Province (Grant No. 222300420054) and excellent Science and Technology Innovation Team of Henan Normal University (Grant No. 2021TD03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianhui Sun or Shuying Dong.

Electronic Supplementary Material

11705_2022_2226_MOESM1_ESM.pdf

Construction of defect-containing UiO-66/MoSe2 heterojunctions with superior photocatalytic performance for wastewater treatment and mechanism insight

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, X., Wang, X., Wang, J. et al. Construction of defect-containing UiO-66/MoSe2 heterojunctions with superior photocatalytic performance for wastewater treatment and mechanism insight. Front. Chem. Sci. Eng. 17, 449–459 (2023). https://doi.org/10.1007/s11705-022-2226-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2226-3

Keywords

Navigation