Skip to main content
Log in

High-precision standard enthalpy of formation for polycyclic aromatic hydrocarbons predicting from general connectivity based hierarchy with discrete correction of atomization energy

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The standard enthalpy of formation is an important predictor of the reaction heat of a chemical reaction. In this work, a high-precision method was developed to calculate accurate standard enthalpies of formation for polycyclic aromatic hydrocarbons based on the general connectivity based hierarchy (CBH) with the discrete correction of atomization energy. Through a comparison with available experimental findings and other high-precision computational results, it was found that the present method can give a good description of enthalpy of formation for polycyclic aromatic hydrocarbons. Since CBH schemes can broaden the scope of application, this method can be used to investigate the energetic properties of larger polycyclic aromatic hydrocarbons to achieve a high-precision calculation at the CCSD(T)/CBS level. In addition, the energetic properties of CBH fragments can be accurately calculated and integrated into a database for future use, which will increase computational efficiency. We hope this work can give new insights into the energetic properties of larger systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dong X, Chang Y, Niu B, Jia M. Development of a practical reaction model of polycyclic aromatic hydrocarbon (PAH) formation and oxidation for diesel surrogate fuel. Fuel, 2020, 267: 117159

    Article  CAS  Google Scholar 

  2. Jin Z H, Chen J T, Song S B, Tian D X, Tian Z Y. Pyrolysis study of a three-component surrogate jet fuel. Combustion and Flame, 2021, 226: 190–199

    Article  CAS  Google Scholar 

  3. Liu X, Pan Y, Zhang P, Wang Y, Xu G, Su Z, Yang F. Alkylation of benzene with carbon dioxide to low-carbon aromatic hydrocarbons over bifunctional Zn—Ti/HZSM-5 catalyst. Frontiers of Chemical Science and Engineering, 2022, 16(3): 384–396

    Article  CAS  Google Scholar 

  4. Liu P, Liu Y, Lv Y, Xiong W, Hao F, Luo H. Zinc modification of Ni—Ti as efficient NixZnyTi1 catalysts with both geometric and electronic improvements for hydrogenation of nitroaromatics. Frontiers of Chemical Science and Engineering, 2022, 16(4): 461–474

    Article  CAS  Google Scholar 

  5. Cui Y, Zeng Z, Zheng J, Huang Z, Yang J. Efficient photodegradation of phenol assisted by persulfate under visible light irradiation via a nitrogen-doped titanium-carbon composite. Frontiers of Chemical Science and Engineering, 2021, 15(5): 1125–1133

    Article  CAS  Google Scholar 

  6. Zhang J, Tian F, Chen J, Shi Y, Cao H, Ning P, Xie Y. Conversion of phenol to cyclohexane in the aqueous phase over Ni/zeolite bi-functional catalysts. Frontiers of Chemical Science and Engineering, 2021, 15(2): 288–298

    Article  CAS  Google Scholar 

  7. Rahman H H, Niemann D, Munson-McGee S H. Association among urinary polycyclic aromatic hydrocarbons and depression: a cross-sectional study from NHANES 2015–2016. Environmental Science and Pollution Research International, 2022, 29(9): 13089–13097

    Article  CAS  Google Scholar 

  8. Kärcher B, Mahrt F, Marcolli C. Process-oriented analysis of aircraft soot-cirrus interactions constrains the climate impact of aviation. Communications Earth & Environment, 2021, 2(1): 1–9

    Article  Google Scholar 

  9. Johansson K O, Head-Gordon M P, Schrader P E, Wilson K R, Michelsen H A. Resonance-stabilized hydrocarbon-radical chain reactions may explain soot inception and growth. Science, 2018, 361(6406): 997–1000

    Article  CAS  Google Scholar 

  10. Thomson M, Mitra T. A radical approach to soot formation. Science, 2018, 361(6406): 978–979

    Article  CAS  Google Scholar 

  11. Liu L, Chen S, Xu H, Zhu Q, Ren H. Effect of alkyl substituent for cyclohexane on pyrolysis towards sooting tendency from theoretical principle. Journal of Analytical and Applied Pyrolysis, 2022, 161: 105386

    Article  CAS  Google Scholar 

  12. Plehiers P P, Lengyel I, West D H, Marin G B, Stevens C V, Van Geem K M. Fast estimation of standard enthalpy of formation with chemical accuracy by artificial neural network correction of low-level-of-theory ab initio calculations. Chemical Engineering Journal, 2021, 426: 131304

    Article  CAS  Google Scholar 

  13. Paulechka E, Kazakov A. Efficient Ab initio estimation of formation enthalpies for organic compounds: extension to sulfur and critical evaluation of experimental data. Journal of Physical Chemistry A, 2021, 125(36): 8116–8131

    Article  CAS  Google Scholar 

  14. Lyon R E. Thermal dynamics of bomb calorimeters. Review of Scientific Instruments, 2015, 86(12): 125103

    Article  Google Scholar 

  15. Constantinou L, Gani R. New group contribution method for estimating properties of pure compounds. AIChE Journal. American Institute of Chemical Engineers, 1994, 40(10): 1697–1710

    Article  CAS  Google Scholar 

  16. Hehre W J, Ditchfield R, Radom L, Pople J A. Molecular orbital theory of the electronic structure of organic compounds. V. Molecular theory of bond separation. Journal of the American Chemical Society, 1970, 92(16): 4796–4801

    Article  CAS  Google Scholar 

  17. Ochterski J W. Thermochemistry in gaussian. Gaussian Inc, 2000, 1: 1–19

    Google Scholar 

  18. Herndon W C, Nowak P C, Connor D A, Lin P. Empirical model calculations for thermodynamic and structural properties of condensed polycyclic aromatic hydrocarbons. Journal of the American Chemical Society, 1992, 114(1): 41–47

    Article  CAS  Google Scholar 

  19. Wu H S, Sandler S I. Use of ab initio quantum mechanics calculations in group contribution methods. 1. Theory and the basis for group identifications. Industrial & Engineering Chemistry Research, 1991, 30(5): 881–889

    Article  CAS  Google Scholar 

  20. Sivaramakrishnan R, Tranter R S, Brezinsky K. Ring conserved isodesmic reactions: a new method for estimating the heats of formation of aromatics and PAHs. Journal of Physical Chemistry A, 2005, 109(8): 1621–1628

    Article  CAS  Google Scholar 

  21. Petersson G A, Malick D K, Wilson W G, Ochterski J W, Montgomery J AJr, Frisch M. Calibration and comparison of the Gaussian-2, complete basis set, and density functional methods for computational thermochemistry. Journal of Chemical Physics, 1998, 109(24): 10570–10579

    Article  CAS  Google Scholar 

  22. Curtiss L A, Redfern P C, Raghavachari K. Gaussian-4 theory. Journal of Chemical Physics, 2007, 126(8): 084108

    Article  Google Scholar 

  23. Raghavachari K, Trucks G W, Pople J A, Head-Gordon M. Reprint of: A fifth-order perturbation comparison of electron correlation theories. Chemical Physics Letters, 2013, 589: 37–40

    Article  CAS  Google Scholar 

  24. Ramabhadran R O, Raghavachari K. The successful merger of theoretical thermochemistry with fragment-based methods in quantum chemistry. Accounts of Chemical Research, 2014, 47(12): 3596–3604

    Article  CAS  Google Scholar 

  25. Dykstra C, Frenking G, Kim K, Scuseria G, eds. Theory and Applications of Computational Chemistry: The First Forty Years. Amsterdam: Elsevier, 2011: 1336

    Google Scholar 

  26. Paulechka E, Kazakov A. Efficient DLPNO–CCSD(T)-based estimation of formation enthalpies for C-, H-, O-, and N-containing closed-shell compounds validated against critically evaluated experimental data. Journal of Physical Chemistry A, 2017, 121(22): 4379–4387

    Article  CAS  Google Scholar 

  27. Becke A D. Density-functional thermochemistry. III. The role of exact exchange. Journal of Chemical Physics, 1993, 98(7): 5648–5652

    Article  CAS  Google Scholar 

  28. Zhao Y, Truhlar D G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts, 2008, 120(1): 215–241

    Article  CAS  Google Scholar 

  29. Truhlar D G. Basis-set extrapolation. Chemical Physics Letters, 1998, 294(1–3): 45–48

    Article  CAS  Google Scholar 

  30. Gaussion 09. Revision A.02. Wallingford, CT: Gaussian Inc, 2009

    Google Scholar 

  31. Prosen E J, Gilmont R, Rossini F D. Heats of combustion of benzene, toluene, ethylbenzene, ortho-xylene, meta-xylene, para-xylene, normal-propylbenzene, and styrene. Journal of Research of the National Bureau of Standards, 1945, 34(1): 65–71

    Article  CAS  Google Scholar 

  32. Steele W V, Chirico R D, Nguyen A, Hossenlopp I A, Smith N K. Determination of ideal-gas enthalpies of formation for key compounds. NIPER Technical Report, 1991

  33. Bakowies D. Estimating systematic error and uncertainty in ab initio thermochemistry: II. ATOMIC(hc) enthalpies of formation for a large set of hydrocarbons. Journal of Chemical Theory and Computation, 2019, 16(1): 399–426

    Article  Google Scholar 

  34. Wiberg K B, Hao S. Enthalpies of hydration of alkenes. 4. Formation of acyclic tert-alcohols. Journal of Organic Chemistry, 1991, 56(17): 5108–5110

    Article  CAS  Google Scholar 

  35. Molnar A, Rachford R, Smith G V, Liu R. Heats of hydrogenation by a simple and rapid flow calorimetric method. Applied Catalysis, 1984, 9(2): 219–223

    Article  CAS  Google Scholar 

  36. Manion J A. Evaluated enthalpies of formation of the stable closed shell C1 and C2 chlorinated hydrocarbons. Journal of Physical and Chemical Reference Data, 2002, 31(1): 123–172

    Article  CAS  Google Scholar 

  37. Gao C W, Allen J W, Green W H, West R H. Reaction mechanism generator: automatic construction of chemical kinetic mechanisms. Computer Physics Communications, 2016, 203: 212–225

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21903057 and 91841301) and National Science and Technology Major Project (Grant No. 2017-I-0004-004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haisheng Ren.

Electronic Supplementary Material

11705_2022_2184_MOESM1_ESM.pdf

High-precision standard enthalpy of formation for polycyclic aromatic hydrocarbons predicting from general connectivity based hierarchy with discrete correction of atomization energy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Xu, H., Liu, L. et al. High-precision standard enthalpy of formation for polycyclic aromatic hydrocarbons predicting from general connectivity based hierarchy with discrete correction of atomization energy. Front. Chem. Sci. Eng. 16, 1743–1750 (2022). https://doi.org/10.1007/s11705-022-2184-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2184-9

Keywords

Navigation