Skip to main content

Covalent triazine framework with efficient photocatalytic activity in aqueous and solid media

Abstract

Covalent triazine frameworks (CTFs) have been recently employed for visible light-driven photocatalysis due to their unique optical and electronic properties. However, the usually highly hydrophobic nature of CTFs, which originates from their overall aromatic backbone, leads to limitations of CTFs for applications in aqueous media. In this study, we aim to extend the range of the application media of CTFs and design hybrid material of a CTF and mesoporous silica (SBA-15) for efficient photocatalysis in aqueous medium. A thiophene-containing CTF was directly synthesized in mesopores of SBA-15. Due to the high surface area and the added hydrophilic properties by silica, the hybrid material demonstrated excellent adsorption of organic molecules in water. This leads not only to high photocatalytic performance of the hybrid material for the degradation of organic dyes in water, but also for efficient photocatalysis in solvent-free and solid state. Furthermore, the reusability, stability and easy recovery of the hybrid material offers promising metal-free heterogeneous photocatalyst for broader applications in different reaction media.

References

  1. Zhang Y, Jin S. Recent advancements in the synthesis of covalent triazine frameworks for energy and environmental applications. Polymers, 2018, 11(1): 31

    PubMed Central  Article  Google Scholar 

  2. Artz J. Covalent triazine-based frameworks—tailor-made catalysts and catalyst supports for molecular and nanoparticulate species. ChemCatChem, 2018, 10(8): 1753–1771

    CAS  Article  Google Scholar 

  3. Liu M, Guo L, Jin S, Tan B. Covalent triazine frameworks: Synthesis and applications. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(10): 5153–5172

    CAS  Google Scholar 

  4. Zhu X, Tian C C, Mahurin S M, Chai S H, Wang C M, Brown S, Veith G M, Luo H M, Liu H L, Dai S. A superacid-catalyzed synthesis of porous membranes based on triazine frameworks for CO2 separation. Journal of the American Chemical Society, 2012, 134(25): 10478–10484

    CAS  PubMed  Article  Google Scholar 

  5. Liebl M R, Senker J. Microporous functionalized triazine-based polyimides with high CO2 capture capacity. Chemistry of Materials, 2013, 25(6): 970–980

    CAS  Article  Google Scholar 

  6. Hao L, Ning J, Luo B, Wang B, Zhang Y, Tang Z, Yang J, Thomas A, Zhi L. Structural evolution of 2D microporous covalent triazine-based framework toward the study of high-performance super-capacitors. Journal of the American Chemical Society, 2015, 137(1): 219–225

    CAS  PubMed  Article  Google Scholar 

  7. Xu F, Yang S, Jiang G, Ye Q, Wei B, Wang H. Fluorinated, sulfur-rich, covalent triazine frameworks for enhanced confinement of polysulfides in lithium-sulfur batteries. ACS Applied Materials & Interfaces, 2017, 9(43): 37731–37738

    CAS  Article  Google Scholar 

  8. Liu J, Lyu P, Zhang Y, Nachtigall P, Xu Y. New layered triazine framework/exfoliated 2D polymer with superior sodium-storage properties. Advanced Materials, 2018, 30(11): 1705401

    Article  Google Scholar 

  9. Bi J, Fang W, Li L, Wang J, Liang S, He Y, Liu M, Wu L. Covalent triazine-based frameworks as visible light photocatalysts for the splitting of water. Macromolecular Rapid Communications, 2015, 36(20): 1799–1805

    CAS  PubMed  Article  Google Scholar 

  10. Guo L, Niu Y, Xu H, Li Q, Razzaque S, Huang Q, Jin S, Tan B. Engineering heteroatoms with atomic precision in donor-acceptor covalent triazine frameworks to boost photocatalytic hydrogen production. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(40): 19775–19781

    CAS  Google Scholar 

  11. Xie J, Shevlin S A, Ruan Q, Moniz S J A, Liu Y, Liu X, Li Y, Lau C C, Guo Z X, Tang J. Efficient visible light-driven water oxidation and proton reduction by an ordered covalent triazine-based framework. Energy & Environmental Science, 2018, 11(6): 1617–1624

    Article  Google Scholar 

  12. Huang W, Ma B C, Lu H, Li R, Wang L, Landfester K, Zhang K A I. Visible-light-promoted selective oxidation of alcohols using a covalent triazine framework. ACS Catalysis, 2017, 7(8): 5438–5442

    CAS  Article  Google Scholar 

  13. Zhu G, Shi S, Liu M, Zhao L, Wang M, Zheng X, Gao J, Xu J. Formation of strong basicity on covalent triazine frameworks as catalysts for the oxidation of methylene compounds. ACS Applied Materials & Interfaces, 2018, 10(15): 12612–12617

    CAS  Article  Google Scholar 

  14. Artz J, Mallmann S, Palkovits R. Selective aerobic oxidation of HMF to 2,5-diformylfuran on covalent triazine frameworks-supported Ru catalysts. ChemSusChem, 2015, 8(4): 672–679

    CAS  PubMed  Article  Google Scholar 

  15. Streat M, Sweetland L A. Removal of pesticides from water using hypercrosslinked polymer phases: Part 2— sorption studies. Process Safety and Environmental Protection, 1998, 76(2): 127–134

    CAS  Article  Google Scholar 

  16. Penner N A, Nesterenko P N, Ilyin M M, Tsyurupa M P, Davankov V A. Investigation of the properties of hypercrosslinked polystyrene as a stationary phase for high-performance liquid chromatography. Chromatographia, 1999, 50(9): 611–620

    CAS  Article  Google Scholar 

  17. Kuhn P, Krüger K, Thomas A, Antonietti M. “Everything is surface”: Tunable polymer organic frameworks with ultrahigh dye sorption capacity. Chemical Communications, 2008, (44): 5815–5817

  18. Huang W, Ma B C, Lu H, Li R, Wang L, Landfester K, Zhang K A I. Visible-light-promoted selective oxidation of alcohols using a covalent triazine framework. ACS Catalysis, 2017, 7(8): 5438–5442

    CAS  Article  Google Scholar 

  19. Law K Y. Definitions for hydrophilicity, hydrophobicity, and superhydrophobicity: Getting the basics right. Journal of Physical Chemistry Letters, 2014, 5(4): 686–688

    CAS  PubMed  Article  Google Scholar 

  20. Chen J, Sheng Y, Song Y, Chang M, Zhang X, Cui L, Meng D, Zhu H, Shi Z, Zou H. Multimorphology mesoporous silica nanoparticles for dye adsorption and multicolor luminescence applications. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 3533–3545

    CAS  Article  Google Scholar 

  21. Li H, Liu Y, Gao X, Fu C, Wang X. Facile synthesis and enhanced visible-light photocatalysis of graphitic carbon nitride composite semiconductors. ChemSusChem, 2015, 8(7): 1189–1196

    CAS  PubMed  Article  Google Scholar 

  22. Urakami H, Zhang K, Vilela F. Modification of conjugated microporous poly-benzothiadiazole for photosensitized singlet oxygen generation in water. Chemical Communications, 2013, 49(23): 2353–2355

    CAS  PubMed  Article  Google Scholar 

  23. Byun J, Landfester K, Zhang K A I. Conjugated polymer hydrogel photocatalysts with expandable photoactive sites in water. Chemistry of Materials, 2019, 31(9): 3381–3387

    CAS  Article  Google Scholar 

  24. Ghosh S, Kouamé N A, Ramos L, Remita S, Dazzi A, Deniset-Besseau A, Beaunier P, Goubard F, Aubert P H, Remita H. Conducting polymer nanostructures for photocatalysis under visible light. Nature Materials, 2015, 14(5): 505–511

    CAS  PubMed  Article  Google Scholar 

  25. Yu L, Mao Y, Qu L. Simple voltammetric determination of rhodamine B by using the glassy carbon electrode in fruit juice and preserved fruit. Food Analytical Methods, 2013, 6(6): 1665–1670

    Article  Google Scholar 

  26. Huang H B, Wang Y, Cai F Y, Jiao W B, Zhang N, Liu C, Cao H L, Lü J. Photodegradation of rhodamine B over biomass-derived activated carbon supported CdS nanomaterials under visible irradiation. Frontiers in Chemistry, 2017, 5(123): 123

    PubMed  PubMed Central  Article  Google Scholar 

  27. Mukthar Ali M, Arya Nair J S, Sandhya K Y. Role of reactive oxygen species in the visible light photocatalytic mineralization of rhodamine B dye by P25—carbon dot photocatalyst. Dyes and Pigments, 2019, 163: 274–284

    CAS  Article  Google Scholar 

  28. Guo F, Wang K, Lu J, Chen J, Dong X, Xia D, Zhang A, Wang Q. Activation of peroxymonosulfate by magnetic carbon supported Prussian blue nanocomposite for the degradation of organic contaminants with singlet oxygen and superoxide radicals. Chemosphere, 2019, 218: 1071–1081

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

K. A. I. Z. acknowledges the Max Planck Society for financial support. C. A. is a recipient of a fellowship through funding of the Excellence Initiative (DFG/GSC 266) of the Graduate School of Excellence “MAINZ” (Materials Science in Mainz).

Funding

Funding Information Open access funding provided by Projekt DEAL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai A. I. Zhang.

Electronic Supplementary Information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ayed, C., Huang, W. & Zhang, K.A.I. Covalent triazine framework with efficient photocatalytic activity in aqueous and solid media. Front. Chem. Sci. Eng. 14, 397–404 (2020). https://doi.org/10.1007/s11705-019-1884-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-019-1884-2

Keywords

  • photocatalysis
  • covalent triazine framework
  • aqueous medium
  • SBA-15
  • solid state