Skip to main content
Log in

Hypoxia-induced activity loss of a photo-responsive microtubule inhibitor azobenzene combretastatin A4

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The conformation-dependent activity of azobenzene combretastatin A4 (Azo-CA4) provides a unique approach to reduce the side-effects of chemotherapy, due to the light-triggered conformation transition of its azobenzene moiety. Under hypoxic tumor microenvironment, however, the high expression of azoreductase can reduce azobenzene to aniline. It was postulated that the Azo-CA4 might be degraded under hypoxia, resulting in the decrease of its anti-tumor activity. The aim of this study was to verify such hypothesis in HeLa cells in vitro. The quantitative drug concentration analysis shows the ratio-metric formation of degradation end-products, confirming the bioreduction of Azo-CA4. The tubulin staining study indicates that Azo-CA4 loses the potency of switching off microtubule dynamics under hypoxia. Furthermore, the cell cycle analysis shows that the ability of Azo-CA4 to induce mitotic arrest is lost at low oxygen content. Therefore, the cytotoxicity of Azo-CA4 is compromised under hypoxia. In contrast, combretastatin A4 as a positive control maintains the potency to inhibit tubulin polymerization and break down the nuclei irrespective of light irradiation and oxygen level. This work highlights the influence of hypoxic tumor microenvironment on the anti-tumor potency of Azo-CA4, which should be considered during the early stage of designing translational Azo-CA4 delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mollman J E. Cisplatin neurotoxicity. New England Journal of Medicine, 1990, 322(2): 126–127

    Article  CAS  PubMed  Google Scholar 

  2. Singal P K, Iliskovic N. Doxorubicin-induced cardiomyopathy. New England Journal of Medicine, 1998, 339(13): 900–905

    Article  CAS  PubMed  Google Scholar 

  3. Bae Y H, Park K. Targeted drug delivery to tumors: Myths, reality and possibility. Journal of Controlled Release, 2011, 153(3): 198–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lu D, Tao R, Wang Z. Carbon-based materials for photodynamic therapy: A mini-review. Frontiers of Chemical Science and Engineering, 2019, 13(2): 310–323

    Article  CAS  Google Scholar 

  5. Kwon I K, Lee S C, Han B, Park K. Analysis on the current status of targeted drug delivery to tumors. Journal of Controlled Release, 2012, 164(2): 108–114

    Article  CAS  PubMed  Google Scholar 

  6. Wilhelm S, Tavares A J, Dai Q, Ohta S, Audet J, Dvorak H F, Chan W C W. Analysis of nanoparticle delivery to tumours. Nature Reviews. Materials, 2016, 1(5): 1–12

    Article  CAS  Google Scholar 

  7. Hu Q, Bomba H N, Gu Z. Engineering platelet-mimicking drug delivery vehicles. Frontiers of Chemical Science and Engineering, 2017, 11(4): 624–632

    Article  Google Scholar 

  8. Xin K, Li M, Lu D, Meng X, Deng J, Kong D, Ding D, Wang Z, Zhao Y. Bioinspired coordination micelles integrating high stability, triggered cargo release, and magnetic resonance imaging. ACS Applied Materials & Interfaces, 2017, 9(1): 80–91

    Article  CAS  Google Scholar 

  9. Hu Q, Sun W, Wang C, Gu Z. Recent advances of cocktail chemotherapy by combination drug delivery systems. Advanced Drug Delivery Reviews, 2016, 98: 19–34

    Article  CAS  PubMed  Google Scholar 

  10. Webster R M. Combination therapies in oncology. Nature Reviews. Drug Discovery, 2016, 15(2): 81–82

    Article  CAS  PubMed  Google Scholar 

  11. Doroshow J H, Simon R M. On the design of combination cancer therapy. Cell, 2017, 171(7): 1476–1478

    Article  CAS  PubMed  Google Scholar 

  12. Li H, Li M, Chen C, Fan A, Kong D, Wang Z, Zhao Y. On-demand combinational delivery of curcumin and doxorubicin via a pH-labile micellar nanocarrier. International Journal of Pharmaceutics, 2015, 495(1): 572–578

    Article  CAS  PubMed  Google Scholar 

  13. Maeda H. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Advanced Drug Delivery Reviews, 2015, 91: 3–6

    Article  CAS  PubMed  Google Scholar 

  14. Peer D, Karp J M, Hong S, Farokhzad O C, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2007, 2(12): 751–760

    Article  CAS  PubMed  Google Scholar 

  15. Zhang P, Ye J, Liu E, Sun J, Zhang S J, Lee J, Gong J, He H, Yang V C. Aptamer-coded DNA nanoparticles for targeted doxorubicin delivery using pH-sensitive spacer. Frontiers of Chemical Science and Engineering, 2017, 11(4): 529–536

    Article  CAS  Google Scholar 

  16. Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nature Materials, 2013, 12(11): 991–1003

    Article  CAS  PubMed  Google Scholar 

  17. Torchilin V P. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nature Reviews. Drug Discovery, 2014, 13(11): 813–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li X, Gao M, Xin K, Zhang L, Ding D, Kong D, Wang Z, Shi Y, Kiessling F, Lammers T, Cheng J, Zhao Y. Singlet oxygen-responsive micelles for enhanced photodynamic therapy. Journal of Controlled Release, 2017, 260: 12–21

    Article  CAS  PubMed  Google Scholar 

  19. Tao R, Gao M, Liu F, Guo X, Fan A, Ding D, Kong D, Wang Z, Zhao Y. Alleviating the liver toxicity of chemotherapy via pH-responsive hepatoprotective prodrug micelles. ACS Applied Materials & Interfaces, 2018, 10(26): 21836–21846

    Article  CAS  Google Scholar 

  20. Gao J, Li J, Geng W C, Chen F Y, Duan X, Zheng Z, Ding D, Guo D S. Biomarker displacement activation: A general host-guest strategy for targeted phototheranostics in vivo. Journal of the American Chemical Society, 2018, 140(14): 4945–4953

    Article  CAS  PubMed  Google Scholar 

  21. He H, Sun L, Ye J, Liu E, Chen S, Liang Q, Shin M C, Yang V C. Enzyme-triggered, cell penetrating peptide-mediated delivery of anti-tumor agents. Journal of Controlled Release, 2016, 240: 67–76

    Article  CAS  PubMed  Google Scholar 

  22. Chen C, Zhao J, Gao M, Meng X, Fan A, Wang Z, Zhao Y. Photo-triggered micelles: Simultaneous activation and release of micro-tubule inhibitors for on-demand chemotherapy. Biomaterials Science, 2018, 6(3): 511–518

    Article  CAS  PubMed  Google Scholar 

  23. Liu Y, Liu Y, Bu W, Cheng C, Zuo C, Xiao Q, Sun Y, Ni D, Zhang C, Liu J, Shi J. Hypoxia induced by upconversion-based photo-dynamic therapy: Towards highly effective synergistic bioreductive therapy in tumors. Angewandte Chemie International Edition, 2015, 54(28): 8105–8109

    Article  CAS  PubMed  Google Scholar 

  24. Borowiak M, Nahaboo W, Reynders M, Nekolla K, Jalinot P, Hasserodt J, Rehberg M, Delattre M, Zahler S, Vollmar A, Trauner D, Thorn-Seshold O. Photoswitchable inhibitors of microtubule dynamics optically control mitosis and cell death. Cell, 2015, 162(2): 403–411

    Article  CAS  PubMed  Google Scholar 

  25. Engdahl A J, Torres E A, Lock S E, Engdahl T B, Mertz P S, Streu C N. Synthesis, characterization, and bioactivity of the photoisomerizable tubulin polymerization inhibitor azo-combretastatin A4. Organic Letters, 2015, 17(18): 4546–4549

    Article  CAS  PubMed  Google Scholar 

  26. Sheldon J E, Dcona M M, Lyons C E, Hackett J C, Hartman M C. Photoswitchable anticancer activity via trans-cis isomerization of a combretastatin A-4 analog. Organic & Biomolecular Chemistry, 2016, 14(1): 40–49

    Article  CAS  Google Scholar 

  27. Rastogi S K, Zhao Z, Barrett S L, Shelton S D, Zafferani M, Anderson H E, Blumenthal M O, Jones L R, Wang L, Li X, Streu C N, Du L, Brittain W J. Photoresponsive azo-combretastatin A-4 analogues. European Journal of Medicinal Chemistry, 2018, 143: 1–7

    Article  CAS  PubMed  Google Scholar 

  28. Muroyama A, Lechler T. Microtubule organization, dynamics and functions in differentiated cells. Development, 2017, 144(17): 3012–3021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Castle B T, Odde D J. Optical control of microtubule dynamics in time and space. Cell, 2015, 162(2): 243–245

    Article  CAS  PubMed  Google Scholar 

  30. Perche F, Biswas S, Wang T, Zhu L, Torchilin V P. Hypoxia-targeted siRNA delivery. Angewandte Chemie International Edition, 2014, 53(13): 3362–3366

    Article  CAS  PubMed  Google Scholar 

  31. Li J, Meng X, Deng J, Lu D, Zhang X, Chen Y, Zhu J, Fan A, Ding D, Kong D, Wang Z, Zhao Y. Multifunctional micelles dually responsive to hypoxia and singlet oxygen: Enhanced photodynamic therapy via interactively triggered photosensitizer delivery. ACS Applied Materials & Interfaces, 2018, 10(20): 17117–17128

    Article  CAS  Google Scholar 

  32. Hanahan D, Weinberg R A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5): 646–674

    Article  CAS  Google Scholar 

  33. Rankin E B, Giaccia A J. Hypoxic control of metastasis. Science, 2016, 352(6282): 175–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tang J, Huang C, Shu J, Zheng J, Ma D, Li J, Yang R. Azoreductase and target simultaneously activated fluorescent monitoring for cytochrome c release under hypoxia. Analytical Chemistry, 2018, 90(9): 5865–5872

    Article  CAS  PubMed  Google Scholar 

  35. Wang L, Huang X, Wang B, Zhao J, Guo X, Wang Z, Zhao Y. Mechanistic insight into the singlet oxygen-triggered expansion of hypoxia-responsive polymeric micelles. Biomaterials Science, 2018, 6(7): 1712–1716

    Article  CAS  PubMed  Google Scholar 

  36. Li M, Gao M, Fu Y, Chen C, Meng X, Fan A, Kong D, Wang Z, Zhao Y. Acetal-linked polymeric prodrug micelles for enhanced curcumin delivery. Colloids and Surfaces. B, Biointerfaces, 2016, 140: 11–18

    Article  CAS  PubMed  Google Scholar 

  37. Beharry A A, Woolley G A. Azobenzene photoswitches for biomolecules. Chemical Society Reviews, 2011, 40(8): 4422–4437

    Article  CAS  PubMed  Google Scholar 

  38. Piao W, Hanaoka K, Fujisawa T, Takeuchi S, Komatsu T, Ueno T, Terai T, Tahara T, Nagano T, Urano Y. Development of an azo-based photosensitizer activated under mild hypoxia for photodynamic therapy. Journal of the American Chemical Society, 2017, 139(39): 13713–13719

    Article  CAS  PubMed  Google Scholar 

  39. Verwilst P, Han J, Lee J, Mun S, Kang H G, Kim J S. Reconsidering azobenzene as a component of small-molecule hypoxia-mediated cancer drugs: A theranostic case study. Biomaterials, 2017, 115: 104–114

    Article  CAS  PubMed  Google Scholar 

  40. Dong M, Babalhavaeji A, Samanta S, Beharry A A, Woolley G A. Red-shifting azobenzene photoswitches for in vivo use. Accounts of Chemical Research, 2015, 48(10): 2662–2670

    Article  CAS  PubMed  Google Scholar 

  41. Wu S, Butt H J. Near-infrared-sensitive materials based on upconverting nanoparticles. Advanced Materials, 2016, 28(6): 1208–1226

    Article  CAS  PubMed  Google Scholar 

  42. Bandara H M, Friss T R, Enriquez M M, Isley W, Incarvito C, Frank H A, Gascon J, Burdette S C. Proof for the concerted inversion mechanism in the trans-cis isomerization of azobenzene using hydrogen bonding to induce isomer locking. Journal of Organic Chemistry, 2010, 75(14): 4817–4827

    Article  CAS  PubMed  Google Scholar 

  43. Aliprandi A, Mauro M, De Cola L. Controlling and imaging biomimetic self-assembly. Nature Chemistry, 2016, 8(1): 10–15

    Article  CAS  PubMed  Google Scholar 

  44. Meng L, Cheng Y, Gan S, Zhang Z, Tong X, Xu L, Jiang X, Zhu Y, Wu J, Yuan A, Hu Y. Facile deposition of manganese dioxide to albumin-bound paclitaxel nanoparticles for modulation of hypoxic tumor microenvironment to improve chemoradiation therapy. Molecular Pharmaceutics, 2018, 15(2): 447–457

    Article  CAS  PubMed  Google Scholar 

  45. Sheng Y, Nesbitt H, Callan B, Taylor M A, Love M, McHale A P, Callan J F. Oxygen generating nanoparticles for improved photodynamic therapy of hypoxic tumours. Journal of Controlled Release, 2017, 264: 333–340

    Article  CAS  PubMed  Google Scholar 

  46. Cheng Y, Cheng H, Jiang C, Qiu X, Wang K, Huan W, Yuan A, Wu J, Hu Y. Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy. Nature Communications, 2015, 6(1): 8785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kolemen S, Ozdemir T, Lee D, Kim G M, Karatas T, Yoon J, Akkaya E U. Remote-controlled release of singlet oxygen by the plasmonic heating of endoperoxide-modified gold nanorods: Towards a paradigm change in photodynamic therapy. Angewandte Chemie International Edition, 2016, 55(11): 3606–3610

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the National Natural Science Foundation of China (Grant No. 21650110447).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanjun Zhao or Zheng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, Y., Chen, C., Zhu, J. et al. Hypoxia-induced activity loss of a photo-responsive microtubule inhibitor azobenzene combretastatin A4. Front. Chem. Sci. Eng. 14, 880–888 (2020). https://doi.org/10.1007/s11705-019-1864-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-019-1864-6

Keywords

Navigation