Skip to main content
Log in

Engineering platelet-mimicking drug delivery vehicles

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Platelets dynamically participate in various physiological processes, including wound repair, bacterial clearance, immune response, and tumor metastasis. Recreating the specific biological features of platelets by mimicking the structure of the platelet or translocating the platelet membrane to synthetic particles holds great promise in disease treatment. This review highlights recent advancements made in the platelet-mimicking strategies. The future opportunities and translational challenges are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rondina M T, Weyrich A S, Zimmerman G A. Platelets as cellular effectors of inflammation in vascular diseases. Circulation Research, 2013, 112(11): 1506–1519

    Article  CAS  Google Scholar 

  2. Moers A, Nieswandt B, Massberg S, Wettschureck N, Grüner S, Konrad I, Schulte V, Aktas B, Gratacap M P, Simon M I, Gawaz M, Offermanns S. G13 is an essential mediator of platelet activation in hemostasis and thrombosis. Nature Medicine, 2003, 9(11): 1418–1422

    Article  CAS  Google Scholar 

  3. Semple J W, Italiano J E, Freedman J. Platelets and the immune continuum. Nature Reviews. Immunology, 2011, 11(4): 264–274

    Article  CAS  Google Scholar 

  4. Davì G, Patrono C. Platelet activation and atherothrombosis. New England Journal of Medicine, 2007, 357(24): 2482–2494

    Article  Google Scholar 

  5. Gay L J, Felding-Habermann B. Contribution of platelets to tumour metastasis. Nature Reviews. Cancer, 2011, 11(2): 123–134

    Article  CAS  Google Scholar 

  6. Karpatkin S, Pearlstein E, Ambrogio C, Coller B. Role of adhesive proteins in platelet tumor interaction in vitro and metastasis formation in vivo. Journal of Clinical Investigation, 1988, 81(4): 1012–1019

    Article  CAS  Google Scholar 

  7. Borsig L, Wong R, Feramisco J, Nadeau D R, Varki N M, Varki A. Heparin and cancer revisited: Mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(6): 3352–3357

    Article  CAS  Google Scholar 

  8. Jurasz P, Alonso-Escolano D, Radomski M W. Platelet-cancer interactions: Mechanisms and pharmacology of tumour cell—induced platelet aggregation. British Journal of Pharmacology, 2004, 143(7): 819–826

    Article  CAS  Google Scholar 

  9. Borsig L. The role of platelet activation in tumor metastasis. Expert Review of Anticancer Therapy, 2008, 8(8): 1247–1255

    Article  CAS  Google Scholar 

  10. Farokhzad O C, Langer R. Impact of nanotechnology on drug delivery. ACS Nano, 2009, 3(1): 16–20

    Article  CAS  Google Scholar 

  11. Farokhzad O C, Langer R. Nanomedicine: Developing smarter therapeutic and diagnostic modalities. Advanced Drug Delivery Reviews, 2006, 58(14): 1456–1459

    Article  CAS  Google Scholar 

  12. Langer R. Drug delivery and targeting. Nature, 1998, 392(6679 Suppl): 5–10

    CAS  Google Scholar 

  13. Peer D, Karp J M, Hong S, Farokhzad O C, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2007, 2(12): 751–760

    Article  CAS  Google Scholar 

  14. Shi J, Votruba A R, Farokhzad O C, Langer R. Nanotechnology in drug delivery and tissue engineering: From discovery to applications. Nano Letters, 2010, 10(9): 3223–3230

    Article  CAS  Google Scholar 

  15. Wilhelm S, Tavares A J, Dai Q, Ohta S, Audet J, Dvorak H F, Chan W C. Analysis of nanoparticle delivery to tumours. Nature Reviews Materials, 2016, 1(5): 16014

    Article  CAS  Google Scholar 

  16. Mitragotri S, Anderson D G, Chen X, Chow E K, Ho D, Kabanov A V, Karp J M, Kataoka K, Mirkin C A, Petrosko S H, Shi J, Stevens MM, Sun S, Teoh S, Venkatraman S S, Xia Y, Wang S, Gu Z, Xu C. Accelerating the translation of nanomaterials in biomedicine. ACS Nano, 2015, 9(7): 6644–6654

    Article  CAS  Google Scholar 

  17. Ikoba U, Peng H, Li H, Miller C, Yu C, Wang Q. Nanocarriers in therapy of infectious and inflammatory diseases. Nanoscale, 2015, 7(10): 4291–4305

    Article  CAS  Google Scholar 

  18. Peng H, Liu X, Wang G, Li M, Bratlie K M, Cochran E, Wang Q. Polymeric multifunctional nanomaterials for theranostics. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2015, 3(34): 6856–6870

    Article  CAS  Google Scholar 

  19. Nguyen T X, Huang L, Gauthier M, Yang G, Wang Q. Recent advances in liposome surface modification for oral drug delivery. Nanomedicine (London), 2016, 11(9): 1169–1185

    Article  CAS  Google Scholar 

  20. Weber C, Fraemohs L, Dejana E. The role of junctional adhesion molecules in vascular inflammation. Nature Reviews. Immunology, 2007, 7(6): 467–477

    Article  CAS  Google Scholar 

  21. Nesbitt WS, Westein E, Tovar-Lopez F J, Tolouei E, Mitchell A, Fu J, Carberry J, Fouras A, Jackson S P. A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nature Medicine, 2009, 15(6): 665–673

    Article  CAS  Google Scholar 

  22. Nandi S, Brown A C. Platelet-mimetic strategies for modulating the wound environment and inflammatory responses. Experimental Biology and Medicine (Maywood, N.J.), 2016, 241(10): 1138–1148

    Article  CAS  Google Scholar 

  23. Woulfe D. Review articles: Platelet G protein—coupled receptors in hemostasis and thrombosis. Journal of Thrombosis and Haemostasis, 2005, 3(10): 2193–2200

    Article  CAS  Google Scholar 

  24. Kuwahara M, Sugimoto M, Tsuji S, Matsui H, Mizuno T, Miyata S, Yoshioka A. Platelet shape changes and adhesion under high shear flow. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22(2): 329–334

    Article  CAS  Google Scholar 

  25. Frojmovic MM, Milton J G. Human platelet size, shape, and related functions in health and disease. Physiological Reviews, 1982, 62(1): 185–261

    Article  CAS  Google Scholar 

  26. Kamath S, Blann A, Lip G. Platelet activation: Assessment and quantification. European Heart Journal, 2001, 22(17): 1561–1571

    Article  CAS  Google Scholar 

  27. Jackson S P. The growing complexity of platelet aggregation. Blood, 2007, 109(12): 5087–5095

    Article  CAS  Google Scholar 

  28. Borsig L. The role of platelet activation in tumor metastasis. Expert Review of Anticancer Therapy, 2008, 8(8): 1247–1255

    Article  CAS  Google Scholar 

  29. Liu X, Zhang F, Wang Q, Gao J, Meng J, Wang S, Yang Z, Jiang L. Platelet-inspired multiscaled cytophilic interfaces with high specificity and efficiency toward point-of-care cancer diagnosis. Small, 2014, 10(22): 4677–4683

    Article  CAS  Google Scholar 

  30. Gires O, Klein C A, Baeuerle P A. On the abundance of EpCAM on cancer stem cells. Nature Reviews. Cancer, 2009, 9(2): 143–143

    Article  CAS  Google Scholar 

  31. Baeuerle P, Gires O. EpCAM (CD326) finding its role in cancer. British Journal of Cancer, 2007, 96(3): 417–423

    Article  CAS  Google Scholar 

  32. Sarkar S, Alam M A, Shaw J, Dasgupta A K. Drug delivery using platelet cancer cell interaction. Pharmaceutical Research, 2013, 30(11): 2785–2794

    Article  CAS  Google Scholar 

  33. Brown A C, Stabenfeldt S E, Ahn B, Hannan R T, Dhada K S, Herman E S, Stefanelli V, Guzzetta N, Alexeev A, Lam W A, Lyon L A, Barker T H. Ultrasoft microgels displaying emergent plateletlike behaviours. Nature Materials, 2014, 13(12): 1108–1114

    Article  CAS  Google Scholar 

  34. Doshi N, Orje J N, Molins B, Smith JW, Mitragotri S, Ruggeri ZM. Platelet mimetic particles for targeting thrombi in flowing blood. Advanced Materials, 2012, 24(28): 3864–3869

    Article  CAS  Google Scholar 

  35. Anselmo A C, Modery-Pawlowski C L, Menegatti S, Kumar S, Vogus D R, Tian L L, Chen M, Squires T M, Sen Gupta A, Mitragotri S. Platelet-like nanoparticles: Mimicking shape, flexibility, and surface biology of platelets to target vascular injuries. ACS Nano, 2014, 8(11): 11243–11253

    Article  CAS  Google Scholar 

  36. Gao W, Zhang L. Coating nanoparticles with cell membranes for targeted drug delivery. Journal of Drug Targeting, 2015, 23(7-8): 619–626

    Article  CAS  Google Scholar 

  37. Luk B T, Zhang L. Cell membrane-camouflaged nanoparticles for drug delivery. Journal of Controlled Release, 2015, 220: 600–607

    Article  CAS  Google Scholar 

  38. Wang Q, Cheng H, Peng H, Zhou H, Li P Y, Langer R. Non-genetic engineering of cells for drug delivery and cell-based therapy. Advanced Drug Delivery Reviews, 2015, 91: 125–140

    Article  CAS  Google Scholar 

  39. Fang R H, Hu C M J, Luk B T, Gao W, Copp J A, Tai Y, O’Connor D E, Zhang L. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Letters, 2014, 14(4): 2181–2188

    Article  CAS  Google Scholar 

  40. Hu C M J, Fang R H, Copp J, Luk B T, Zhang L. A biomimetic nanosponge that absorbs pore-forming toxins. Nature Nanotechnol-ogy, 2013, 8(5): 336–340

    Article  CAS  Google Scholar 

  41. Hu C M J, Fang R H, Luk B T, Zhang L. Nanoparticle-detained toxins for safe and effective vaccination. Nature Nanotechnology, 2013, 8(12): 933–938

    Article  CAS  Google Scholar 

  42. Hu C M J, Zhang L, Aryal S, Cheung C, Fang R H, Zhang L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(27): 10980–10985

    Article  CAS  Google Scholar 

  43. Parodi A, Quattrocchi N, van de Ven A L, Chiappini C, Evangelopoulos M, Martinez J O, Brown B S, Khaled S Z, Yazdi I K, Enzo M V. Biomimetic functionalization with leukocyte membranes imparts cell like functions to synthetic particles. Nature Nanotechnology, 2013, 8(1): 61–68

    Article  CAS  Google Scholar 

  44. Fan Z, Zhou H, Li P Y, Speer J E, Cheng H. Structural elucidation of cell membrane-derived nanoparticles using molecular probes. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2014, 2(46): 8231–8238

    Article  CAS  Google Scholar 

  45. Luk B T, Hu C M J, Fang R H, Dehaini D, Carpenter C, Gao W, Zhang L. Interfacial interactions between natural RBC membranes and synthetic polymeric nanoparticles. Nanoscale, 2014, 6(5): 2730–2737

    Article  CAS  Google Scholar 

  46. Li J, Sharkey C C, Wun B, Liesveld J L, King M R. Genetic engineering of platelets to neutralize circulating tumor cells. Journal of Controlled Release, 2016, 228: 38–47

    Article  CAS  Google Scholar 

  47. Ponta H, Sherman L, Herrlich P A. CD44: From adhesion molecules to signalling regulators. Nature Reviews. Molecular Cell Biology, 2003, 4(1): 33–45

    Article  CAS  Google Scholar 

  48. Hu Q, Sun W, Qian C, Wang C, Bomba H N, Gu Z. Anticancer platelet-mimicking nanovehicles. Advanced Materials, 2015, 27(44): 7043–7050

    Article  CAS  Google Scholar 

  49. Hu Q, Sun W, Lu Y, Bomba H N, Ye Y, Jiang T, Isaacson A J, Gu Z. Tumor microenvironment-mediated construction and deconstruction of extracellular drug-delivery depots. Nano Letters, 2016, 16(2): 1118–1126

    Article  CAS  Google Scholar 

  50. Hu Q, Sun W, Wang C, Gu Z. Recent advances of cocktail chemotherapy by combination drug delivery systems. Advanced Drug Delivery Reviews, 2016, 98: 19–34

    Article  CAS  Google Scholar 

  51. Cohen J A, Beaudette T T, Tseng W W, Bachelder E M, Mende I, Engleman E G, Fréchet J M. T-cell activation by antigen-loaded pHsensitive hydrogel particles in vivo: The effect of particle size. Bioconjugate Chemistry, 2008, 20(1): 111–119

    Article  Google Scholar 

  52. Kwon Y J, Standley S M, Goh S L, Fréchet J M. Enhanced antigen presentation and immunostimulation of dendritic cells using aciddegradable cationic nanoparticles. Journal of Controlled Release, 2005, 105(3): 199–212

    Article  CAS  Google Scholar 

  53. Li J, Ai Y, Wang L, Bu P, Sharkey C C, Wu Q, Wun B, Roy S, Shen X, King M R. Targeted drug delivery to circulating tumor cells via platelet membrane-functionalized particles. Biomaterials, 2016, 76: 52–65

    Article  CAS  Google Scholar 

  54. Hu Q, Qian C, Sun W, Wang J, Chen Z, Bomba H N, Xin H, Shen Q, Gu Z. Engineered nanoplatelets for enhanced treatment of multiple myeloma and thrombus. Advanced Materials, 2016

    Google Scholar 

  55. Swami A, Reagan M R, Basto P, Mishima Y, Kamaly N, Glavey S, Zhang S, Moschetta M, Seevaratnam D, Zhang Y, Liu J, Memarzadeh M, Wu J, Manier S, Shi J, Bertrand N, Lu Z N, Nagano K, Baron R, Sacco A, Roccaro A M, Farokhzad O C, Ghobrial I M. Engineered nanomedicine for myeloma and bone microenvironment targeting. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(28): 10287–10292

    Article  CAS  Google Scholar 

  56. Hu C M J, Fang R H, Wang K C, Luk B T, Thamphiwatana S, Dehaini D, Nguyen P, Angsantikul P, Wen C H, Kroll A V, Carpenter C, Ramesh M, Qu V, Patel S H, Zhu J, Shi W, Hofman F M, Chen T C, Gao W, Zhang K, Chien S, Zhang L. Nanoparticle biointerfacing by platelet membrane cloaking. Nature, 2015, 526(7571): 118–121

    Article  CAS  Google Scholar 

  57. Farokhzad O C. Nanotechnology: Platelet mimicry. Nature, 2015, 526(7571): 47–48

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants from NC TraCS, NIH’s Clinical and Translational Science Awards (CTSA, NIH grant 1UL1TR001111) at UNC-CH, Sloan Fellowship Award from the Alfred P. Sloan Foundation, and the startup package from the Joint Biomedical Engineering Department of the UNC-CH and NC State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Gu.

Additional information

Zhen Gu obtained his Ph.D. at the University of California, Los Angeles, under the guidance of Professor Yi Tang in the Department of Chemical and Biomolecular Engineering. He was a postdoctoral associate working with Professor Robert Langer at MIT and Harvard Medical School. He is currently an associate professor in the Joint Department of Biomedical Engineering at University of North Carolina at Chapel Hill and North Carolina State University. He also holds a joint position in the Eshelman School of Pharmacy and Department of Medicine at UNC. His group studies controlled drug delivery, bioinspired materials, and nanobiotechnology, especially for cancer and diabetes treatment.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Q., Bomba, H.N. & Gu, Z. Engineering platelet-mimicking drug delivery vehicles. Front. Chem. Sci. Eng. 11, 624–632 (2017). https://doi.org/10.1007/s11705-017-1614-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-017-1614-6

Keywords

Navigation