Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Frontiers of Chemical Science and Engineering
  3. Article
Glyco-functionalised quantum dots and their progress in cancer diagnosis and treatment
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

The potential application of gold-apoferritin nanocages conjugated with 2-amino-2-deoxy-glucose for imaging of breast cancer cells

31 October 2020

Tuğba Nur Aslan, Elif Aşık, … Mürvet Volkan

Glycan-Based Near-infrared Fluorescent (NIRF) Imaging of Gastrointestinal Tumors: a Preclinical Proof-of-Concept In Vivo Study

11 August 2020

Ruben D. Houvast, Victor M. Baart, … Cornelis F. M. Sier

Bioengineered aptamer-nanoconjugates for cancer theragnosis

25 September 2018

Simranjeet Singh Sekhon, Gna Ahn, … Yang-Hoon Kim

Quantum Dot-Based Simultaneous Multicolor Imaging

16 September 2019

Wenxia Wang, Zhen Liu & Xiaoli Lan

The Role of Gold Nanoclusters as Emerging Theranostic Agents for Cancer Management

25 May 2021

Kritika Sood & Asifkhan Shanavas

Fluorescent Nanoparticles Coated with a Somatostatin Analogue Target Blood Monocyte for Efficient Leukaemia Treatment

09 October 2020

Ahmed A. H. Abdellatif, Robert Hennig, … Achim Goepferich

Prospects in the use of gold nanoparticles as cancer theranostics and targeted drug delivery agents

14 November 2022

Durdana Yasin, Neha Sami, … Tasneem Fatma

Gold nanocages in cancer diagnosis, therapy, and theranostics: A brief review

06 November 2021

Vahid Alimardani, Ghazal Farahavar, … Samira Sadat Abolmaali

Smart nanomaterials for cancer diagnosis and treatment

15 May 2022

Ragini Singh, Ayush Sharma, … Hemant Kumar Daima

Download PDF
  • Review Article
  • Open Access
  • Published: 27 September 2019

Glyco-functionalised quantum dots and their progress in cancer diagnosis and treatment

  • Jayshree Ashree1,
  • Qi Wang2 &
  • Yimin Chao1 

Frontiers of Chemical Science and Engineering volume 14, pages 365–377 (2020)Cite this article

  • 911 Accesses

  • 9 Citations

  • 3 Altmetric

  • Metrics details

Abstract

Despite all major breakthroughs in recent years of research, we are still unsuccessful to effectively diagnose and treat cancer that has express and metastasizes. Thus, the development of a novel approach for cancer detection and treatment is crucial. Recent progress in Glyconanotechnology has allowed the use of glycans and lectins as bio-functional molecules for many biological and biomedical applications. With the known advantages of quantum dots (QDs) and versatility of carbohydrates and lectins, Glyco-functionalised QD is a new prospect in constructing biomedical imaging platform for cancer behaviour study as well as treatment. In this review, we aim to describe the current utilisation of Glyco-functionalised QDs as well as their future prospective to interpret and confront cancer.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. Bentolila L A, Ebenstein Y, Weiss S. Quantum dots for in vivo small-animal imaging. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 2009, 50(4): 493–496

    Article  CAS  Google Scholar 

  2. Byers R J, Hitchman E R. Quantum dots brighten biological imaging. Progress in Histochemistry and Cytochemistry, 2011, 45 (4): 201–237

    Article  PubMed  Google Scholar 

  3. Tholouli E, Sweeney E, Barrow E, Clay V, Hoyland J, Byers R. Quantum dots light up pathology. Journal of Pathology, 2008, 216 (3): 275–285

    Article  CAS  Google Scholar 

  4. He X, Gao J, Gambhir S S, Cheng Z. Near-infrared fluorescent nanoprobes for cancer molecular imaging: Status and challenges. Trends in Molecular Medicine, 2010, 16(12): 574–583

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Hilderbrand S A, Weissleder R. Near-infrared fluorescence: Application to in vivo molecular imaging. Current Opinion in Chemical Biology, 2010, 14(1): 71–79

    Article  CAS  PubMed  Google Scholar 

  6. Wang Y, Chen L. Quantum dots, lighting up the research and development of nanomedicine. Nanomedicine (London), 2011, 7 (4): 385–402

    Article  CAS  Google Scholar 

  7. Varki A, Cummings R D, Esko J D, Freeze H H, Stanley P, Bertozzi C R, Hart G W, Etzler ME. Essentials of Glycobiology. 3rd ed. New York: Cold Spring Harbor Laboratory Press, 2009

    Google Scholar 

  8. Calvaresi E C, Hergenrother P J. Glucose conjugation for the specific targeting and treatment of cancer. Chemical Science (Cambridge), 2013, 4(6): 2319–2333

    Article  CAS  Google Scholar 

  9. Kottari N, Chabre Y M, Sharma R, Roy R. Applications of glyconanoparticles as “sweet” glycobiological therapeutics and diagnostics. In: Multifaceted Development and Application of Biopolymers for Biology, Biomedicine and Nanotechnology. Dutta P K, Dutta J, eds. Berlin: Springer International Publishing, 2013

    Google Scholar 

  10. Marradi M, Chiodo F, Garcia I, Penades S. Glyconanoparticles as multifunctional and multimodal carbohydrate systems. Chemical Society Reviews, 2013, 42(11): 4728–4745

    Article  CAS  PubMed  Google Scholar 

  11. Luczkowiak J, Munoz A, Sanchez-Navarro M, Ribeiro-Viana R, Ginieis A, Illescas B M, Martin N, Delgado R, Rojo J. Glycofullerenes inhibit viral infection. Biomacromolecules, 2013, 14(2): 431–437

    Article  CAS  PubMed  Google Scholar 

  12. Ribeiro-Viana R, Sánchez-Navarro M, Luczkowiak J, Koeppe J R, Delgado R, Rojo J, Davis B G. Virus-like glycodendrinanoparticles displaying quasi-equivalent nested polyvalency upon glycoprotein platforms potently block viral infection. Nature Communications, 2012, 3(1): 1303

    Article  PubMed  CAS  Google Scholar 

  13. Fasting C, Schalley C A, Weber M, Seitz O, Hecht S, Koksch B, Dernedde J, Graf C, Knapp E W, Haag R. Multivalency as a chemical organization and action principle. Angewandte Chemie International Edition, 2012, 51(42): 10472–10498

    Article  CAS  PubMed  Google Scholar 

  14. Liu B, Lu X, Ruan H, Cui J, Li H. Synthesis and applications of glyconanoparticles. Current Organic Chemistry, 2016, 20(14): 1502–1511

    Article  CAS  Google Scholar 

  15. Reichardt N C, Martin-Lomas M, Penades S. Glyconanotechnology. Chemical Society Reviews, 2013, 42(10): 4358–4376

    Article  CAS  PubMed  Google Scholar 

  16. Sharon N, Lis H. History of lectins: From hemagglutinins to biological recognition molecules. Glycobiology, 2004, 14(11): 53R–62R

    Article  CAS  PubMed  Google Scholar 

  17. Sharon N, Lis H. Lectins as cell recognition molecules. Science, 1989, 246(4927): 227–234

    Article  CAS  PubMed  Google Scholar 

  18. Ashwell G, Harford J. Carbohydrate-specific receptors of the liver. Annual Review of Biochemistry, 1982, 51(1): 531–554

    Article  CAS  PubMed  Google Scholar 

  19. Belardi B, Bertozzi C R. Chemical lectinology: Tools for probing the ligands and dynamics of mammalian lectins in vivo. Chemistry & Biology, 2015, 22(8): 983–993

    Article  CAS  Google Scholar 

  20. André S, Kaltner H, Manning J C, Murphy P V, Gabius H J. Lectins: Getting familiar with translators of the sugar code. Molecules (Basel, Switzerland), 2015, 20(2): 1788–1823

    Article  CAS  Google Scholar 

  21. Surolia A, Bachhawat B K, Podder S K. Interaction between lectin from ricinus communis and liposomes containing gangliosides. Nature, 1975, 257(5529): 802–804

    Article  CAS  PubMed  Google Scholar 

  22. Häuselmann I, Borsig L. Altered tumor-cell glycosylation promotes metastasis. Frontiers in Oncology, 2014, 4: 28

    Article  PubMed  PubMed Central  Google Scholar 

  23. Friedel M, Andre S, Goldschmidt H, Gabius H J, Schwartz-Albiez R. Galectin-8 enhances adhesion of multiple myeloma cells to vascular endothelium and is an adverse prognostic factor. Glycobiology, 2016, 26(10): 1048–1058

    Article  CAS  PubMed  Google Scholar 

  24. Compagno D, Gentilini L D, Jaworski F M, Pérez I G, Contrufo G, Laderach D J. Glycans and galectins in prostate cancer biology, angiogenesis and metastasis. Glycobiology, 2014, 24(10): 899–906

    Article  CAS  PubMed  Google Scholar 

  25. Vazquez-Levin MH, Marin-Briggiler C I, Caballero J N, Veiga MF. Epithelial and neural cadherin expression in the mammalian reproductive tract and gametes and their participation in fertilization-related events. Developmental Biology, 2015, 401(1): 2–16

    Article  CAS  PubMed  Google Scholar 

  26. Ng K, Ferreyra J, Higginbottom S, Lynch J, Kashyap P, Gopinath S, Naidu N, Choudhury B, Weimer B, Monack D, Sonnenburg J L. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature, 2013, 502(7469): 96–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Becer C R. The glycopolymer code: Synthesis of glycopolymers and multivalent carbohydrate-lectin interactions. Macromolecular Rapid Communications, 2012, 33(9): 742–752

    Article  CAS  PubMed  Google Scholar 

  28. Kazunori M, Miki H, Takayasu I, Yoshinao Y, Kazukiyo K. Self-organized glycoclusters along DNA: Effect of the spatial arrangement of galactoside residues on cooperative lectin recognition. Chemistry (Weinheim an der Bergstrasse, Germany), 2004, 10(2): 352–359

    Google Scholar 

  29. Brus L E. Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. Journal of Chemical Physics, 1984, 80(9): 4403–4409

    Article  CAS  Google Scholar 

  30. Alivisatos A P, Gu W, Larabell C. Quantum dots as cellular probes. Annual Review of Biomedical Engineering, 2005, 7(1): 55–76

    Article  CAS  PubMed  Google Scholar 

  31. Foote M. The importance of planned dose of chemotherapy on time: Do we need to change our clinical practice? Oncologist, 1998, 3(5): 365–368

    Article  CAS  PubMed  Google Scholar 

  32. Naumov G, Akslen L, Folkman J. Role of angiogenesis in human tumor dormancy: Animal models of the angiogenic switch. Cell Cycle (Georgetown, Tex.), 2006, 5(16): 1779–1787

    Article  CAS  Google Scholar 

  33. Frangioni J V. New technologies for human cancer imaging. Journal of Clinical Oncology, 2008, 26(24): 4012–4021

    Article  PubMed  PubMed Central  Google Scholar 

  34. Liu J, Levine A L, Mattoon J S, Yamaguchi M, Lee R J, Pan X, Rosol T J. Nanoparticles as image enhancing agents for ultrasonography. Physics in Medicine and Biology, 2006, 51(9): 2179–2189

    Article  CAS  PubMed  Google Scholar 

  35. Massoud T F, Gambhir S S. Molecular imaging in living subjects: Seeing fundamental biological processes in a new light. Genes & Development, 2003, 17(5): 545–580

    Article  CAS  Google Scholar 

  36. Albrecht T, Blomley M J K, Burns P N,Wilson S, Harvey C J, Leen E, Claudon M, Calliada F, Correas J M, LaFortune M, et al. Improved detection of hepatic metastases with pulse-inversion US during the liver-specific phase of SHU 508A: Multicenter study. Radiology, 2003, 227(2): 361–370

    Article  PubMed  Google Scholar 

  37. Blomley M J, Cooke J C, Unger E C, Monaghan M J, Cosgrove D O. Microbubble contrast agents: A new era in ultrasound. BMJ (Clinical Research Ed.), 2001, 322(7296): 1222–1225

    Article  CAS  Google Scholar 

  38. Cormode D P, Skajaa T, Fayad Z A, Mulder W J. Nanotechnology in medical imaging: Probe design and applications. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29(7): 992–1000

    Article  CAS  PubMed  Google Scholar 

  39. Weissleder R. Scaling down imaging: Molecular mapping of cancer in mice. Nature Reviews. Cancer, 2002, 2(1): 8–11

    Article  CAS  Google Scholar 

  40. Caravan P, Ellison J J, McMurry T J, Lauffer R B. Gadolinium(iii) chelates as MRI contrast agents: Structure, dynamics, and applications. Chemical Reviews, 1999, 99(9): 2293–2352

    Article  CAS  PubMed  Google Scholar 

  41. Hoult D I, Phil D. Sensitivity and power deposition in a high-field imaging experiment. Journal of Magnetic Resonance Imaging, 2000, 12(1): 46–67

    Article  CAS  PubMed  Google Scholar 

  42. Jongmin S, Md A R, Kyeong K M, Ho I G, Hee L J, Su L I. Hollow manganese oxide nanoparticles as multifunctional agents for magnetic resonance imaging and drug delivery. Angewandte Chemie International Edition, 2009, 48(2): 321–324

    Article  CAS  Google Scholar 

  43. Smith A M, Duan H, Mohs A M, Nie S. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Advanced Drug Delivery Reviews, 2008, 60(11): 1226–1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang H, Yee D, Wang C. Quantum dots for cancer diagnosis and therapy: Biological and clinical perspectives. Nanomedicine (London), 2008, 3(1): 83–91

    Article  CAS  Google Scholar 

  45. Wang H, Li H, Zhang W, Wei L M, Yu H X, Yang P Y. Multiplex profiling of glycoproteins using a novel bead-based lectin array. Proteomics, 2014, 14(1): 78–86

    Article  CAS  PubMed  Google Scholar 

  46. Munkley J, Elliott D J. Hallmarks of glycosylation in cancer. Oncotarget, 2016, 7(23): 35478–35489

    Article  PubMed  PubMed Central  Google Scholar 

  47. Liu X, Nie H, Zhang Y B, Yao Y F, Maitikabili A, Qu Y P, Shi S L, Chen C Y, Li Y. Cell surface-specific N-glycan profiling in breast cancer. PLoS One, 2013, 8(8): 11

    Article  Google Scholar 

  48. Scott E, Munkley J. Glycans as biomarkers in prostate cancer. International Journal of Molecular Sciences, 2019, 20(6): 20

    Article  CAS  Google Scholar 

  49. Andrade C G, Cabral Filho P E, Tenório D P L, Santos B S, Beltrão E I C, Fontes A, Carvalho L B. Evaluation of glycophenotype in breast cancer by quantum dot-lectin histochemistry. International Journal of Nanomedicine, 2013, 8: 4623–4629

    PubMed  PubMed Central  Google Scholar 

  50. He D, Wang D, Shi X, Quan W, Xiong R, Yu C, Huang H. Simultaneous fluorescence analysis of the different carbohydrates expressed on living cell surfaces using functionalized quantum dots. RSC Advances, 2017, 7(20): 12374–12381

    Article  CAS  Google Scholar 

  51. Cunha C R A, Andrade C G, Pereira M I A, Cabral Filho P E, Carvalho L B Jr, Coelho L C B B, Santos B S, Fontes A, Correia M T S. Quantum dot-cramoll lectin as novel conjugates to glycobiology. Journal of Photochemistry and Photobiology. B, Biology, 2018, 178: 85–91

    Article  CAS  PubMed  Google Scholar 

  52. Akca O, Unak P, Medine E I, Sakarya S, Yurt Kilcar A, Ichedef C, Bekis R, Timur S. Radioiodine labeled CdSe/CdS quantum dots: Lectin targeted dual probes. Radiochimica Acta, 2014, 102(9): 849

    Article  CAS  Google Scholar 

  53. Kara A, Ünak P, Selçuki C, Akça Ö, Medine E İ, Sakarya S. PHA-L lectin and carbohydrate relationship: Conjugation with CdSe/CdS nanoparticles, radiolabeling and in vitro affinities on MCF-7 cells. Journal of Radioanalytical and Nuclear Chemistry, 2014, 299(1): 807–813

    Article  CAS  Google Scholar 

  54. Santos B, de Farias P, de Menezes F, de Ferreira R, Júnior S, Figueiredo R, de Carvalho L, Beltrão E I C. CdS-Cd(OH)2 core shell quantum dots functionalized with concanavalin a lectin for recognition of mammary tumors. Physica Status Solidi. C, Current Topics in Solid State Physics, 2006, 3(11): 4017–4022

    Article  CAS  Google Scholar 

  55. Ohyanagi T, Nagahori N, Shimawaki K, Hinou H, Yamashita T, Sasaki A, Jin T, Iwanaga T, Kinjo M, Nishimura S I. Importance of sialic acid residues illuminated by live animal imaging using phosphorylcholine self-assembled monolayer-coated quantum dots. Journal of the American Chemical Society, 2011, 133(32): 12507–12517

    Article  CAS  PubMed  Google Scholar 

  56. Bavireddi H, Kikkeri R. Glyco-β-cyclodextrin capped quantum dots: Synthesis, cytotoxicity and optical detection of carbohydrateprotein interactions. Analyst (London), 2012, 137(21): 5123–5127

    Article  CAS  Google Scholar 

  57. Shinchi H, Wakao M, Nakagawa S, Mochizuki E, Kuwabata S, Suda Y. Stable sugar-chain-immobilized fluorescent nanoparticles for probing lectin and cells. Chemistry, an Asian Journal, 2012, 7(11): 2678–2682

    Article  CAS  PubMed  Google Scholar 

  58. Shinchi H, Wakao M, Nagata N, Sakamoto M, Mochizuki E, Uematsu T, Kuwabata S, Suda Y. Cadmium-free sugar-chainimmobilized fluorescent nanoparticles containing low-toxicity ZnSAgInS2 cores for probing lectin and cells. Bioconjugate Chemistry, 2014, 25(2): 286–295

    Article  CAS  PubMed  Google Scholar 

  59. Zhai Y, Dasog M, Snitynsky R B, Purkait T K, Aghajamali M, Hahn A H, Sturdy C B, Lowary T L, Veinot J G C. Water-soluble photoluminescent D-mannose and L-alanine functionalized silicon nanocrystals and their application to cancer cell imaging. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2014, 2(47): 8427–8433

    Article  CAS  PubMed  Google Scholar 

  60. Lai C H, Hütter J, Hsu C W, Tanaka H, Varela-Aramburu S, De Cola L, Lepenies B, Seeberger P H. Analysis of carbohydratecarbohydrate interactions using sugar-functionalized silicon nanoparticles for cell imaging. Nano Letters, 2016, 16(1): 807–811

    Article  CAS  PubMed  Google Scholar 

  61. Hsu C W, Septiadi D, Lai C H, Chen P K, Seeberger P H, De Cola L. Glucose-modified silicon nanoparticles for cellular imaging. ChemPlusChem, 2017, 82(4): 660–667

    Article  CAS  PubMed  Google Scholar 

  62. Cheng F F, Liang G X, Shen Y Y, Rana R K, Zhu J J. N-Acetylglucosamine biofunctionalized CdSeTe quantum dots as fluorescence probe for specific protein recognition. Analyst (London), 2013, 138(2): 666–670

    Article  CAS  Google Scholar 

  63. Ahire J H, Chambrier I, Mueller A, Bao Y, Chao Y. Synthesis of Dmannose capped silicon nanoparticles and their interactions with MCF-7 human breast cancerous cells. ACS Applied Materials & Interfaces, 2013, 5(15): 7384–7391

    Article  CAS  Google Scholar 

  64. Ahire J H, Behray M, Webster C A, Wang Q, Sherwood V, Saengkrit N, Ruktanonchai U, Woramongkolchai N, Chao Y. Synthesis of carbohydrate capped silicon nanoparticles and their reduced cytotoxicity, in vivo toxicity, and cellular uptake. Advanced Healthcare Materials, 2015, 4(12): 1877–1886

    Article  CAS  PubMed  Google Scholar 

  65. Dalal C, Jana N R. Galactose multivalency effect on the cell uptake mechanism of bioconjugated nanoparticles. Journal of Physical Chemistry C, 2018, 122(44): 25651–25660

    Article  CAS  Google Scholar 

  66. Zayed D G, Ebrahim S M, Helmy MW, Khattab S N, Bahey-El-Din M, Fang J Y, Elkhodairy K A, Elzoghby A O. Combining hydrophilic chemotherapy and hydrophobic phytotherapy via tumor-targeted albumin-QDs nano-hybrids: Covalent coupling and phospholipid complexation approaches. Journal of Nanobiotechnology, 2019, 17(1): 19

    Article  Google Scholar 

  67. Yin C, Ying L, Zhang P C, Zhuo R X, Kang E T, Leong K W, Mao H Q. High density of immobilized galactose ligand enhances hepatocyte attachment and function. Journal of Biomedical Materials Research. Part A, 2003, 67A(4): 1093–1104

    Article  CAS  Google Scholar 

  68. Hata S, Ishii K. Effect of galactose on binding and endocytosis of asiaioglycoprotein in cultured rat hepatocytes. Annals of Nuclear Medicine, 1998, 12(5): 255–259

    Article  CAS  PubMed  Google Scholar 

  69. Mishra N, Yadav N P, Rai V K, Sinha P, Yadav K S, Jain S, Arora S. Efficient hepatic delivery of drugs: Novel strategies and their significance. BioMed Research International, 2013, 2013: 20

    Google Scholar 

  70. Yousef S, Alsaab H O, Sau S, Iyer A K. Development of asialoglycoprotein receptor directed nanoparticles for selective delivery of curcumin derivative to hepatocellular carcinoma. Heliyon, 2018, 4(12): e01071

    Article  PubMed  PubMed Central  Google Scholar 

  71. Pranatharthiharan S, Patel M D, Malshe V C, Pujari V, Gorakshakar A, Madkaikar M, Ghosh K, Devarajan P V. Asialoglycoprotein receptor targeted delivery of doxorubicin nanoparticles for hepatocellular carcinoma. Drug Delivery, 2017, 24(1): 20–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Abe M, Manola J B, OhWK, Parslow D L, George D J, Austin C L, Kantoff P W. Plasma levels of heat shock protein 70 in patients with prostate cancer: A potential biomarker for prostate cancer. Clinical Prostate Cancer, 2004, 3(1): 49–53

    Article  CAS  PubMed  Google Scholar 

  73. Ciocca D R, Calderwood S K. Heat shock proteins in cancer: Diagnostic, prognostic, predictive, and treatment implications. Cell Stress & Chaperones, 2005, 10(2): 86–103

    Article  CAS  Google Scholar 

  74. Garrido C, Brunet M, Didelot C, Zermati Y, Schmitt E, Kroemer G. Heat shock proteins 27 and 70: Anti-apoptotic proteins with tumorigenic properties. Cell Cycle (Georgetown, Tex.), 2006, 5(22): 2592–2601

    Article  CAS  Google Scholar 

  75. Ahire J H, Wang Q, Coxon P R, Malhotra G, Brydson R, Chen R, Chao Y. Highly luminescent and nontoxic amine-capped nanoparticles from porous silicon: Synthesis and their use in biomedical imaging. ACS Applied Materials & Interfaces, 2012, 4(6): 3285–3292

    Article  CAS  Google Scholar 

  76. Zhang L W, Monteiro-Riviere N A. Mechanisms of quantum dot nanoparticle cellular uptake. Toxicological Sciences, 2009, 110(1): 138–155

    Article  CAS  PubMed  Google Scholar 

  77. Yuan F L, Li S H, Fan Z T, Meng X Y, Fan L Z, Yang S H. Shining carbon dots: Synthesis and biomedical and optoelectronic applications. Nano Today, 2016, 11(5): 565–586

    Article  CAS  Google Scholar 

  78. Zhang M, Bai L L, Shang W H, Xie W J, Ma H, Fu Y Y, Fang D C, Sun H, Fan L Z, Han M, et al. Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells. Journal of Materials Chemistry, 2012, 22(15): 7461–7467

    Article  CAS  Google Scholar 

  79. Fan Z T, Zhou S X, Garcia C, Fan L Z, Zhou J B. pH-responsive fluorescent graphene quantum dots for fluorescence-guided cancer surgery and diagnosis. Nanoscale, 2017, 9(15): 4928–4933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang Q, Bao Y, Zhang X, Coxon P R, Jayasooriya U A, Chao Y. Uptake and toxicity studies of poly-acrylic acid functionalized silicon nanoparticles in cultured mammalian cells. Advanced Healthcare Materials, 2012, 1(2): 189–198

    Article  CAS  PubMed  Google Scholar 

  81. Park J H, Gu L, von Maltzahn G, Ruoslahti E, Bhatia S N, Sailor M J. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nature Materials, 2009, 8(4): 331–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chen H, Cui S, Tu Z, Gu Y, Chi X. In vivo monitoring of organ-selective distribution of cdhgte/SiO2 nanoparticles in mouse model. Journal of Fluorescence, 2012, 22(2): 699–706

    Article  CAS  PubMed  Google Scholar 

  83. Qu Y, Li W, Zhou Y, Liu X, Zhang L,Wang L, Li Y F, Iida A, Tang Z, Zhao Y, et al. Full assessment of fate and physiological behavior of quantum dots utilizing caenorhabditis elegans as a model organism. Nano Letters, 2011, 11(8): 3174–3183

    Article  CAS  PubMed  Google Scholar 

  84. Schipper M L, Iyer G, Koh A L, Cheng Z, Ebenstein Y, Aharoni A, Keren S, Bentolila L A, Li J, Rao J, et al. Particle size, surface coating, and pegylation influence the biodistribution of quantum dots in living mice. Small, 2009, 5(1): 126–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Choi HS, Liu W, Misra P, Tanaka E, Zimmer J P, Ipe B I, Bawendi M G, Frangioni J V. Renal clearance of quantum dots. Nature Biotechnology, 2007, 25(10): 1165–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhu Y, Hong H, Xu Z P, Li Z, Cai W. Quantum dot-based nanoprobes for in vivo targeted imaging. Current Molecular Medicine, 2013, 13(10): 1549–1567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Vela-Ramirez J E, Goodman J T, Boggiatto P M, Roychoudhury R, Pohl N L B, Hostetter J M, Wannemuehler M J, Narasimhan B. Safety and biocompatibility of carbohydrate-functionalized polyanhydride nanoparticles. AAPS Journal, 2015, 17(1): 256–267

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK

    Jayshree Ashree & Yimin Chao

  2. Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, UK

    Qi Wang

Authors
  1. Jayshree Ashree
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Qi Wang
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Yimin Chao
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Yimin Chao.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ashree, J., Wang, Q. & Chao, Y. Glyco-functionalised quantum dots and their progress in cancer diagnosis and treatment. Front. Chem. Sci. Eng. 14, 365–377 (2020). https://doi.org/10.1007/s11705-019-1863-7

Download citation

  • Received: 25 March 2019

  • Accepted: 11 May 2019

  • Published: 27 September 2019

  • Issue Date: June 2020

  • DOI: https://doi.org/10.1007/s11705-019-1863-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • carbohydrate
  • leptin
  • glyco-functionalised QD
  • bioimaging
  • cancer diagnosis and treatment
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.