Skip to main content

Quantum Dots for Theranostic Applications

  • Chapter
  • First Online:
Functional Smart Nanomaterials and Their Theranostics Approaches

Abstract

Over the last decade, quantum dots (QDs), as nanomedicine, are gaining huge importance for their theranostic applications, i.e., in the field of diagnosis and therapeutics. QDs can be explained as colloidal, highly fluorescent, and photostable semiconductor-based nanomaterials exhibiting outstanding physical, chemical, optical, and electronic properties and biocompatibility with living systems, highlighting them as promising candidates for an extensive range of biomedical applications, like live cell imaging, and in vivo as well as in vitro imaging, traceable drug delivery, fluorescence-activated cell sorting (FACS), photodynamic therapy, and therapeutic applications (gene delivery for gene therapy). Moreover, their surface properties can also be modified by employing multifarious methods like ligand exchange, surface salinization, and ligand capping or encapsulation. Despite these dazzling properties, the clinical applications of QDs are well underestimated so far. In the current book chapter, we explain different types of QDs, their characteristic properties, and their major biomedical applications in the field of diagnosis and therapy. Furthermore, a brief focus on the prospective directions of research in QDs is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yu WW, Chang E, Drezek R, Colvin VL (2006) Water-soluble quantum dots for biomedical applications. Biochem Biophys Res Commun 348(3):781–786. https://doi.org/10.1016/J.BBRC.2006.07.160

    Article  PubMed  CAS  Google Scholar 

  2. Ashoori RC (1996) Electrons in artificial atoms. Nature 379(6564): 413–419. https://doi.org/10.1038/379413a0

  3. Kastner MA (1993) Artificial atoms. Phys Today 46(1):24–31. https://doi.org/10.1063/1.881393

    Article  CAS  Google Scholar 

  4. Banin U, Cao YW, Katz D, Millo O (1999) Identification of atomic-like electronic states in indium arsenide nanocrystal quantum dots. Nature 400(6744):542–544. https://doi.org/10.1038/22979

    Article  CAS  Google Scholar 

  5. Cui J, Panfil YE, Koley S, Shamalia D, Waiskopf N, Remennik S, Popov I, Oded M, Banin U (2019) Colloidal quantum dot molecules manifesting quantum coupling at room temperature. Nat Commun 10(1): 1–10. https://doi.org/10.1038/s41467-019-13349-1

  6. Sathe KP, Garud NS, Bangar VB, Gadakh NR (2022) A review on quantum dots (QDS). J Adv Sci Res 13(06): 23–27. https://doi.org/10.55218/JASR.202213603

  7. Reed MA, Randall JN, Aggarwal RJ, Matyi RJ, Moore TM, Wetsel AE (1988) Observation of discrete electronic states in a zero-dimensional semiconductor nanostructure. Phys Rev Lett 60(6):535–537. https://doi.org/10.1103/PHYSREVLETT.60.535

    Article  PubMed  CAS  Google Scholar 

  8. Ma Y, Shen H, Zhang M, Zhang Z (2016) Quantum dots (QDs) for tumor targeting theranostics. Nanomater Tumor Targeting Theranostics: A Proactive Clin Perspect 85–142.https://doi.org/10.1142/9789814635424_0004

  9. Huffaker DL, Park G, Zou Z, Shchekin OB, Deppe DG (1998) 1.3 μm room-temperature GaAs-based quantum-dot laser. Appl Phys Lett 73(18): 2564–2566. https://doi.org/10.1063/1.122534

  10. Loss D, DiVincenzo DP (1998) Quantum computation with quantum dots. Phys Rev A 57(1):120. https://doi.org/10.1103/PhysRevA.57.120

    Article  CAS  Google Scholar 

  11. Achermann M, Petruska MA, Crooker SA, Klimov VI (2003) Picosecond energy transfer in quantum dot Langmuir - Blodgett Nanoassemblies. J Phys Chem B 107(50):13782–13787. https://doi.org/10.1021/JP036497R/ASSET/IMAGES/LARGE/JP036497RF00005.JPEG

    Article  CAS  Google Scholar 

  12. Gorbachev IA, Goryacheva IY, Glukhovskoy EG (2016) Investigation of multilayers structures based on the Langmuir-Blodgett films of CdSe/ZnS quantum dots. BioNanoScience 6(2):153–156. https://doi.org/10.1007/S12668-016-0194-0

    Article  Google Scholar 

  13. Xu S, Dadlani AL, Acharya S, Schindler P, Prinz FB (2016) Oscillatory barrier-assisted Langmuir-Blodgett deposition of large-scale quantum dot monolayers. Appl Surf Sci 367:500–506. https://doi.org/10.1016/J.APSUSC.2016.01.243

    Article  CAS  Google Scholar 

  14. Chan WCW, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281(5385):2016–2018. https://doi.org/10.1126/SCIENCE.281.5385.2016/ASSET/44996DBF-64D8-4090-883B-43F783464AE4/ASSETS/GRAPHIC/SE3986869005.JPEG

    Article  PubMed  CAS  Google Scholar 

  15. Fu A, Gu W, Larabell C, Alivisatos AP (2005) Semiconductor nanocrystals for biological imaging. Curr Opin Neurobiol 15(5):568–575. https://doi.org/10.1016/J.CONB.2005.08.004

    Article  PubMed  CAS  Google Scholar 

  16. Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A. (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science (New York, N.Y.) 298(5599): 1759–1762. https://doi.org/10.1126/SCIENCE.1077194

  17. Alivisatos P (2003) The use of nanocrystals in biological detection. Nat Biotechnol 2004 22(1): 47–52. https://doi.org/10.1038/nbt927

  18. Chan WCW, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13(1):40–46. https://doi.org/10.1016/S0958-1669(02)00282-3

    Article  PubMed  CAS  Google Scholar 

  19. Gao X, Cui Y, Levenson RM, Chung LWK, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22(8):969–976. https://doi.org/10.1038/NBT994

    Article  PubMed  CAS  Google Scholar 

  20. Wu X, Liu H, Liu J, Haley KN, Treadway JA, Larson JP, Ge N, Peale F, Bruchez MP (2003) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21(1):41–46. https://doi.org/10.1038/NBT764

    Article  PubMed  CAS  Google Scholar 

  21. Colton HM, Falls JG, Ni H, Kwanyuen P, Creech D, McNeil E, Casey WM, Hamilton G, Cariello NF (2004) Visualization and quantitation of peroxisomes using fluorescent nanocrystals: treatment of rats and monkeys with fibrates and detection in the liver. Toxicol Sci: An Official J Soc Toxicol 80(1):183–192. https://doi.org/10.1093/TOXSCI/KFH144

    Article  CAS  Google Scholar 

  22. Abdellatif AA, Tawfeek HM, Younis MA, Alsharidah M, al Rugaie O (2022) Biomedical applications of quantum dots: overview, challenges, and clinical potential. Int J Nanomed 17: 1951–1970.https://doi.org/10.2147/IJN.S357980

  23. Abdel-Salam M, Omran B, Whitehead K, Baek KH (2020) Superior properties and biomedical applications of microorganism-derived fluorescent quantum dots. Molecules 25(19):4486. https://doi.org/10.3390/molecules25194486

  24. Holmes JD, Ziegler KJ, Doty RC, Pell LE, Johnston KP, Korgel BA (2001) Highly luminescent silicon nanocrystals with discrete optical transitions. J Am Chem Soc 123(16):3743–3748. https://doi.org/10.1021/JA002956F/ASSET/IMAGES/LARGE/JA002956FF00013.JPEG

    Article  PubMed  CAS  Google Scholar 

  25. Sun YP, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang H, Luo PG, Yang H, Kose ME, Chen B, Veca LM, Xie SY (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128(24):7756–7757. https://doi.org/10.1021/JA062677D/SUPPL_FILE/JA062677DSI20060417_112943.PDF

    Article  PubMed  CAS  Google Scholar 

  26. Warner JH, Hoshino A, Yamamoto K, Tilley RD, Warner JH, Tilley RD, Hoshino A, Yamamoto K (2005) Water-soluble photoluminescent silicon quantum dots. Angew Chem 117(29):4626–4630. https://doi.org/10.1002/ANGE.200501256

    Article  Google Scholar 

  27. Ross FM, Tersoff J, Tromp RM (1998) Coarsening of self-assembled ge quantum dots on Si(001). Phys Rev Lett 80:984–987

    Article  CAS  Google Scholar 

  28. Vasudevan D, Gaddam RR, Trinchi A, Cole I (2015) Core-shell quantum dots: properties and applications. Undefined 636:395–404. https://doi.org/10.1016/J.JALLCOM.2015.02.102

    Article  CAS  Google Scholar 

  29. Li H, Wang C, Peng Z, Fu X (2015) A review on the synthesis methods of CdSeS-based nanostructures. https://doi.org/10.1155/2015/519385

  30. Shao L, Gao Y, Yan F (2011) Semiconductor quantum dots for biomedicial applications. Sensors 11(12): 11736–11751. https://doi.org/10.3390/S111211736

  31. Wang X, Feng Y, Dong P, Huang J (2019) A mini review on carbon quantum dots: preparation, properties, and electrocatalytic application. Front Chem 7:671. https://doi.org/10.3389/FCHEM.2019.00671/XML/NLM

    Article  PubMed  CAS  Google Scholar 

  32. Zhao Y, Liu X, Yang Y, Kang L, Yang Z, Liu W, Chen L (2015) Carbon dots: from intense absorption in visible range to excitation-independent and excitation-dependent photoluminescence 23(11): 922–929. https://doi.org/10.1080/1536383X.2015.1018413

  33. Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, Jensen KF, Bawendi MG (1997) (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 101(46): 9463–9475.https://doi.org/10.1021/JP971091Y/ASSET/IMAGES/LARGE/JP971091YF00016.JPEG

  34. Leatherdale CA, Woo WK, Mikulec FV, Bawendi MG (2002) On the absorption cross section of CdSe nanocrystal quantum dots. J Phys Chem B 106(31): 7619–7622. https://doi.org/10.1021/JP025698C/ASSET/IMAGES/MEDIUM/JP025698CE00009.GIF

  35. Alivisatos A, ~P. (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271(5251):933–937. https://doi.org/10.1126/science.271.5251.933

    Article  CAS  Google Scholar 

  36. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005b) Quantum dots for live cells, in vivo imaging, and diagnostics. Science (New York, N.Y.) 307(5709): 538–544. https://doi.org/10.1126/SCIENCE.1104274

  37. Han M, Gao X, Su JZ, Nie S (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 19(7): 631–635. https://doi.org/10.1038/90228

  38. Bentolila LA, Weiss S (2006) Single-step multicolor fluorescence in situ hybridization using semiconductor quantum dot-DNA conjugates. Cell Biochem Biophys 45(1):59–70. https://doi.org/10.1385/CBB:45:1:59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Bentolila LA, Ebenstein Y, Weiss S (2009) Quantum dots for in vivo small-animal imaging. J Nucl Med: Official Publ, Soc Nuclear Med 50(4):493. https://doi.org/10.2967/JNUMED.108.053561

    Article  CAS  Google Scholar 

  40. Choi HS, Liu W, Liu F, Nasr K, Misra P, Bawendi MG, Frangioni J, v. (2010) Design considerations for tumour-targeted nanoparticles. Nat Nanotechnol 5(1):42–47. https://doi.org/10.1038/NNANO.2009.314

    Article  PubMed  CAS  Google Scholar 

  41. Gao X, Cui Y, Levenson RM, Chung LWK, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Undefined 22(8):969–976. https://doi.org/10.1038/NBT994

    Article  CAS  Google Scholar 

  42. Kim S, Lim YT, Soltesz EG, de Grand AM, Lee J, Nakayama A, Parker JA, Mihaljevic T, Laurence RG, Dor DM, Cohn LH, Bawendi MG, Frangioni JV (2004) Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 22(1):93–97. https://doi.org/10.1038/NBT920

    Article  PubMed  CAS  Google Scholar 

  43. Lu Z, Li CM, Bao H, Qiao Y, Toh Y, Yang X (2008) Mechanism of antimicrobial activity of CdTe quantum dots. Langmuir 24(10):5445–5452. https://doi.org/10.1021/LA704075R/SUPPL_FILE/LA704075R-FILE011.PDF

    Article  PubMed  CAS  Google Scholar 

  44. Abdolmohammadi MH, Fallahian F, Fakhroueian Z, Kamalian M, Keyhanvar PM, Harsini F, Shafiekhani A (2017) Application of new ZnO nanoformulation and Ag/Fe/ZnO nanocomposites as water-based nanofluids to consider in vitro cytotoxic effects against MCF-7 breast cancer cells. Artificial Cells, Nanomed, Biotechnol 45(8): 1769–1777.https://doi.org/10.1080/21691401.2017.1290643

  45. Colvin VL, Schlamp MC, Alivisatos AP (1994) Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370(6488): 354–357. https://doi.org/10.1038/370354a0

  46. Hines MA, Guyot-Sionnest P (1996) Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J Phys Chem 100(2):468–471. https://doi.org/10.1021/JP9530562/ASSET/IMAGES/LARGE/JP9530562F00004.JPEG

    Article  CAS  Google Scholar 

  47. Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J Am Chem Soc 115(19):8706–8715. https://doi.org/10.1021/JA00072A025/ASSET/JA00072A025.FP.PNG_V03

    Article  CAS  Google Scholar 

  48. Hezinger AFE, Teßmar J, Göpferich A (2008) Polymer coating of quantum dots–a powerful tool toward diagnostics and sensorics. Undefined 68(1):138–152. https://doi.org/10.1016/J.EJPB.2007.05.013

    Article  CAS  Google Scholar 

  49. Wang J, Han S, Ke D, Wang R (2012) Semiconductor quantum dots surface modification for potential cancer diagnostic and therapeutic applications. J Nanomater 2012.https://doi.org/10.1155/2012/129041

  50. Orndorff RL, Rosenthal SJ (2009) Neurotoxin quantum dot conjugates detect endogenous targets expressed in live cancer cells. Nano Lett 9(7):2589–2599. https://doi.org/10.1021/NL900789E/SUPPL_FILE/NL900789E_SI_001.PDF

    Article  PubMed  CAS  Google Scholar 

  51. Orndorff RL, Warnement MR, Mason JN, Blakely RD, Rosenthal SJ (2008) Quantum dot ex vivo labeling of neuromuscular synapses. Nano Lett 8(3):780–785. https://doi.org/10.1021/NL072460X

    Article  PubMed  CAS  Google Scholar 

  52. Rosenthal SJ, Tomlinson I, Adkins EM, Schroeter S, Adams S, Swafford L, McBride J, Wang Y, DeFelice LJ, Blakely RD (2002) Targeting cell surface receptors with ligand-conjugated nanocrystals. J Am Chem Soc 124(17):4586–4594. https://doi.org/10.1021/JA003486S/ASSET/IMAGES/MEDIUM/JA003486SN00001.GIF

    Article  PubMed  CAS  Google Scholar 

  53. Huang H, Lovell JF (2017) Advanced functional nanomaterials for theranostics. Adv Func Mater 27(2):1603524. https://doi.org/10.1002/ADFM.201603524

    Article  Google Scholar 

  54. Pisanic TR, Zhang Y, Wang TH (2014) Quantum dots in diagnostics and detection: principles and paradigms. Analyst 139(12):2968. https://doi.org/10.1039/C4AN00294F

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Alivisatos AP, Gu W, Larabell C (2005) Quantum dots as cellular probes. Annu Rev Biomed Eng 7:55–76. https://doi.org/10.1146/ANNUREV.BIOENG.7.060804.100432

    Article  PubMed  CAS  Google Scholar 

  56. Smith AM, Duan H, Mohs AM, Nie S (2008) Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv Drug Deliv Rev 60(11):1226–1240. https://doi.org/10.1016/J.ADDR.2008.03.015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Zrazhevskiy P, Sena M, Gao X (2010) Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem Soc Rev 39(11):4326–4354. https://doi.org/10.1039/B915139G

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005a) Quantum dots for live cells, in vivo imaging, and diagnostics. Science (New York, N.Y.), 307(5709): 538. https://doi.org/10.1126/SCIENCE.1104274

  59. Xiao Y, Barker PE (2004) Semiconductor nanocrystal probes for human metaphase chromosomes. Nucleic Acids Res 32(3):e28–e28. https://doi.org/10.1093/NAR/GNH024

    Article  PubMed  PubMed Central  Google Scholar 

  60. Tan WB, Jiang S, Zhang Y (2007) Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference. Biomaterials 28(8):1565–1571. https://doi.org/10.1016/J.BIOMATERIALS.2006.11.018

    Article  PubMed  CAS  Google Scholar 

  61. Wang C, Gao X, Su X (2010) In vitro and in vivo imaging with quantum dots. Anal Bioanal Chem 397(4):1397–1415. https://doi.org/10.1007/S00216-010-3481-6

    Article  PubMed  CAS  Google Scholar 

  62. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281(5385):2013–2016. https://doi.org/10.1126/SCIENCE.281.5385.2013/ASSET/ED4AA9DC-8A85-4B2D-86E8-9A73F2A52F30/ASSETS/GRAPHIC/SE3986868004.JPEG

    Article  PubMed  CAS  Google Scholar 

  63. Gao X, Yang L, Petros JA, Marshall FF, Simons JW, Nie S (2005) In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol 16(1):63–72. https://doi.org/10.1016/J.COPBIO.2004.11.003

    Article  PubMed  CAS  Google Scholar 

  64. Ruan G, Agrawal A, Marcus AI, Nie S (2007) Imaging and tracking of Tat peptide-conjugated quantum dots in living cells: new insights into nanoparticle uptake, intracellular transport, and vesicle shedding. J Am Chem Soc 129(47):14759–14766. https://doi.org/10.1021/JA074936K/SUPPL_FILE/JA074936KSI20070922_052353.PDF

    Article  PubMed  CAS  Google Scholar 

  65. Peng CW, Liu XL, Chen C, Liu X, Yang XQ, Pang DW, Zhu XB, Li Y (2011) Patterns of cancer invasion revealed by QDs-based quantitative multiplexed imaging of tumor microenvironment. Biomaterials 32(11):2907–2917. https://doi.org/10.1016/J.BIOMATERIALS.2010.12.053

    Article  PubMed  CAS  Google Scholar 

  66. Cai W, Shin DW, Chen K, Gheysens O, Cao Q, Wang SX, Gambhir SS, Chen X (2006) Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett 6(4):669–676. https://doi.org/10.1021/NL052405T

    Article  PubMed  CAS  Google Scholar 

  67. Frangioni JV (2003) In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 7(5): 626–634.https://doi.org/10.1016/j.cbpa.2003.08.007

  68. Weng J, Ren J (2006) Luminescent quantum dots: a very attractive and promising tool in biomedicine. Curr Med Chem 13(8):897–909. https://doi.org/10.2174/092986706776361076

    Article  PubMed  CAS  Google Scholar 

  69. Liu J, Liu J, Yang L, Chen X, Zhang M, Meng F, Luo T, Li M (2009) Nanomaterial-assisted signal enhancement of hybridization for DNA biosensors: a review. Sensors 9(9): 7343–7364. https://doi.org/10.3390/S90907343

  70. Wei H, House S, Wu J, Zhang J, Wang Z, He Y, Gao EJ, Gao Y, Robinson H, Li W, Zuo J, Robertson IM, Lu Y (2013) Enhanced and tunable fluorescent quantum dots within a single crystal of protein. Nano Res 6(9): 627–634. https://doi.org/10.1007/S12274-013-0348-0

  71. Yezhelyev MV, Al-Hajj A, Morris C, Marcus AI, Liu T, Lewis M, Cohen C, Zrazhevskiy P, Simons JW, Rogatko A, Nie S, Gao X, O’Regan RM (2007) In situ molecular profiling of breast cancer biomarkers with multicolor quantum dots. Adv Mater 19(20): 3146–3151. https://doi.org/10.1002/ADMA.200701983

  72. Yong KT, Ding H, Roy I, Law WC, Bergey EJ, Maitra A, Prasad PN (2009) Imaging pancreatic cancer using bioconjugated inp quantum dots. ACS Nano 3(3):502–510. https://doi.org/10.1021/NN8008933/ASSET/IMAGES/LARGE/NN-2008-008933_0008.JPEG

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Alle M, Sharma G, Lee SH, Kim JC (2022) Next-generation engineered nanogold for multimodal cancer therapy and imaging: a clinical perspectives. J Nanobiotechnol 20(1). BioMed Central Ltd. https://doi.org/10.1186/s12951-022-01402-z

  74. Rosenthal SJ, Chang JC, Kovtun O, McBride JR, Tomlinson ID (2011) Biocompatible quantum dots for biological applications. Chem Biol 18(1):10. https://doi.org/10.1016/J.CHEMBIOL.2010.11.013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Åkerman ME, Chan WCW, Laakkonen P, Bhatia SN, Ruoslahti E (2002) Nanocrystal targeting in vivo. Proc Natl Acad Sci USA 99(20):12617–12621. https://doi.org/10.1073/PNAS.152463399

    Article  PubMed  PubMed Central  Google Scholar 

  76. Chen C, Peng J, Xia HS, Yang GF, Wu QS, Chen LD, Zeng LB, Zhang ZL, Pang DW, Li Y (2009) Quantum dots-based immunofluorescence technology for the quantitative determination of HER2 expression in breast cancer. Biomaterials 30(15):2912–2918. https://doi.org/10.1016/J.BIOMATERIALS.2009.02.010

    Article  PubMed  CAS  Google Scholar 

  77. Wen CY, Wu LL, Zhang ZL, Liu YL, Wei SZ, Hu J, Tang M, Sun EZ, Gong YP, Yu J, Pang DW (2014) Quick-response magnetic nanospheres for rapid, efficient capture and sensitive detection of circulating tumor cells. ACS Nano 8(1):941–949. https://doi.org/10.1021/NN405744F/SUPPL_FILE/NN405744F_SI_001.PDF

    Article  PubMed  CAS  Google Scholar 

  78. Xie HY, Zuo C, Liu Y, Zhang ZL, Pang DW, Li XL, Gong JP, Dickinson C, Zhou W (2005) Cell-targeting multifunctional nanospheres with both fluorescence and magnetism. Small 1(5):506–509. https://doi.org/10.1002/SMLL.200400136

    Article  PubMed  CAS  Google Scholar 

  79. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. https://doi.org/10.1016/J.CELL.2011.02.013

    Article  PubMed  CAS  Google Scholar 

  80. Song EQ, Hu J, Wen CY, Tian ZQ, Yu X, Zhang ZL, Shi YB, Pang DW (2011) Fluorescent-magnetic-biotargeting multifunctional nanobioprobes for detecting and isolating multiple types of tumor cells. ACS Nano 5(2):761–770. https://doi.org/10.1021/NN1011336/SUPPL_FILE/NN1011336_SI_001.PDF

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Xie HY, Xie M, Zhang ZL, Long YM, Liu X, Tang ML, Pang DW, Tan Z, Dickinson C, Zhou W (2007) Wheat germ agglutinin-modified trifunctional nanospheres for cell recognition. Bioconjug Chem 18(6):1749–1755. https://doi.org/10.1021/BC060387G

    Article  PubMed  CAS  Google Scholar 

  82. Fidler IJ (2003) The pathogenesis of cancer metastasis: the “seed and soil” hypothesis revisited. Undefined 3(6):453–458. https://doi.org/10.1038/NRC1098

    Article  CAS  Google Scholar 

  83. Sun B, Xie W, Yi G, Chen D, Zhou Y, Cheng J (2001) Microminiaturized immunoassays using quantum dots as fluorescent label by laser confocal scanning fluorescence detection. J Immunol Methods 249(1–2):85–89. https://doi.org/10.1016/S0022-1759(00)00331-8

    Article  PubMed  CAS  Google Scholar 

  84. Fang M, Chen M, Liu L, Li Y (2017) Applications of quantum dots in cancer detection and diagnosis: a review. J Biomed Nanotechnol 13(1):1–16. https://doi.org/10.1166/JBN.2017.2334

    Article  PubMed  Google Scholar 

  85. Dargaville TR, Farrugia BL, Broadbent JA, Pace S, Upton Z, Voelcker NH (2013) Sensors and imaging for wound healing: a review. Biosens Bioelectron 41(1):30–42. https://doi.org/10.1016/J.BIOS.2012.09.029

    Article  PubMed  CAS  Google Scholar 

  86. McInnes SJP, Turner CT, Cowin AJ, Voelcker NH (2016) Wound management using porous silicon. In: Handbook of porous silicon, pp 1–21.https://doi.org/10.1007/978-3-319-04508-5_131-1

  87. Gong X, Lu W, Liu Y, Li Z, Shuang S, Dong C, Choi MMF (2015) Low temperature synthesis of phosphorous and nitrogen co-doped yellow fluorescent carbon dots for sensing and bioimaging. J Mater Chem B 3(33):6813–6819. https://doi.org/10.1039/C5TB00575B

    Article  PubMed  CAS  Google Scholar 

  88. Guinovart T, Valdés-Ramírez G, Windmiller JR, Andrade FJ, Wang J (2014) Bandage-based wearable potentiometric sensor for monitoring wound pH. Electroanalysis 26(6):1345–1353. https://doi.org/10.1002/ELAN.201300558

    Article  CAS  Google Scholar 

  89. Kassal P, Zubak M, Scheipl G, Mohr GJ, Steinberg MD, Murkovi´c, I, Steinberg M (2017). Smart bandage with wireless connectivity for optical monitoring of pH. https://doi.org/10.1016/j.snb.2017.02.095

  90. Sridhar V, Takahata K (2009) A hydrogel-based passive wireless sensor using a flex-circuit inductive transducer. Sens Actuators, A 155(1):58–65. https://doi.org/10.1016/J.SNA.2009.08.010

    Article  CAS  Google Scholar 

  91. Tamayol A, Akbari M, Zilberman Y, Comotto M, Lesha E, Serex L, Bagherifard S, Chen Y, Fu G, Ameri SK, Ruan W, Miller EL, Dokmeci MR, Sonkusale S, Khademhosseini A (2016) Flexible pH-sensing hydrogel fibers for epidermal applications. Adv Healthcare Mater 5(6):711–719. https://doi.org/10.1002/ADHM.201500553

    Article  CAS  Google Scholar 

  92. Jiao Y, Gong X, Han H, Gao Y, Lu W, Liu Y, Xian M, Shuang S, Dong C (2018) Facile synthesis of orange fluorescence carbon dots with excitation independent emission for pH sensing and cellular imaging. Anal Chim Acta 1042:125–132. https://doi.org/10.1016/J.ACA.2018.08.044

    Article  PubMed  CAS  Google Scholar 

  93. Shangguan J, He D, He X, Wang K, Xu F, Liu J, Tang J, Yang X, Huang J (2016) Label-free carbon-dots-based ratiometric fluorescence pH nanoprobes for intracellular pH sensing. Anal Chem 88(15):7837–7843. https://doi.org/10.1021/ACS.ANALCHEM.6B01932/ASSET/IMAGES/LARGE/AC-2016-01932G_0009.JPEG

    Article  PubMed  CAS  Google Scholar 

  94. Wang WJ, Xia JM, Feng J, He MQ, Chen ML, Wang JH (2016) Green preparation of carbon dots for intracellular pH sensing and multicolor live cell imaging. J Mater Chem B 4(44):7130–7137. https://doi.org/10.1039/C6TB02071B

    Article  PubMed  CAS  Google Scholar 

  95. Yuan F, Ding L, Li Y, Li X, Fan L, Zhou S, Fang D, Yang S (2015) Multicolor fluorescent graphene quantum dots colorimetrically responsive to all-pH and a wide temperature range. Nanoscale 7(27):11727–11733. https://doi.org/10.1039/C5NR02007G

    Article  PubMed  CAS  Google Scholar 

  96. Wang L, Li M, Li W, Han Y, Liu Y, Li Z, Zhang B, Pan D (2018) Rationally designed efficient dual-mode colorimetric/fluorescence sensor based on carbon dots for detection of pH and Cu2+ Ions. ACS Sustain Chem Eng 6(10):12668–12674. https://doi.org/10.1021/ACSSUSCHEMENG.8B01625/ASSET/IMAGES/LARGE/SC-2018-01625Q_0006.JPEG

    Article  CAS  Google Scholar 

  97. Yang P, Zhu Z, Zhang T, Zhang W, Chen W, Cao Y, Chen M, Zhou X (2019) Orange-emissive carbon quantum dots: toward application in wound pH monitoring based on colorimetric and fluorescent changing. Small (Weinheim an Der Bergstrasse, Germany) 15(44). https://doi.org/10.1002/SMLL.201902823

  98. Biju V, Itoh T, Anas A, Sujith A, Ishikawa M (2008) Semiconductor quantum dots and metal nanoparticles: syntheses, optical properties, and biological applications. Anal Bioanal Chem 391(7):2469–2495. https://doi.org/10.1007/S00216-008-2185-7

    Article  PubMed  CAS  Google Scholar 

  99. Wegner KD, Hildebrandt N (2015) Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem Soc Rev 44(14):4792–4834. https://doi.org/10.1039/C4CS00532E

    Article  PubMed  CAS  Google Scholar 

  100. Arshad E, Anas A, Asok A, Jasmin C, Pai SS, Bright Singh IS, Mohandas A, Biju V (2016) Fluorescence detection of the pathogenic bacteria Vibrio harveyi in solution and animal cells using semiconductor quantum dots. RSC Adv 6(19):15686–15693. https://doi.org/10.1039/C5RA24161H

    Article  CAS  Google Scholar 

  101. Kloepfer JA, Mielke RE, Wong MS, Nealson KH, Stucky G, Nadeau JL (2003) Quantum dots as strain- and metabolism-specific microbiological labels. Appl Environ Microbiol 69(7):4205. https://doi.org/10.1128/AEM.69.7.4205-4213.2003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Hu Y, Wang C, Bai B, Li M, Wang R, Li Y (2014) Detection of Staphylococcus Aureus using quantum dots as fluorescence labels. Int J Agric Biol Eng 7(1):77–83. https://doi.org/10.3965/J.IJABE.20140701.009

    Article  CAS  Google Scholar 

  103. Assessment UENC for E (2009) Simultaneous detection of multifood-borne pathogenic bacteria based on functionalized quantum dots coupled with immunomagnetic separation in food samples. https://doi.org/10.1021/JF802817Y

  104. Manabe N, Hoshino A, Liang YQ, Goto T, Kato N, Yamamoto K (2006) Quantum dot as a drug tracer in vivo. IEEE Trans Nanobiosci 5(4):263–267. https://doi.org/10.1109/TNB.2006.886569

    Article  Google Scholar 

  105. Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langery R, Farokhzad OC (2007) Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett 7(10):3065–3070. https://doi.org/10.1021/NL071546N

    Article  PubMed  CAS  Google Scholar 

  106. Chen AA, Derfus AM, Khetani SR, Bhatia SN (2005) Quantum dots to monitor RNAi delivery and improve gene silencing. Nucleic Acids Res 33(22). https://doi.org/10.1093/NAR/GNI188

  107. Medarova Z, Pham W, Farrar C, Petkova V, Moore A (2007) In vivo imaging of siRNA delivery and silencing in tumors. Nat Med 13(3):372–377. https://doi.org/10.1038/NM1486

    Article  PubMed  CAS  Google Scholar 

  108. Derfus AM, Chan WCW, Bhatia SN (2004) Intracellular delivery of quantum dots for live cell labeling and organelle tracking. Adv Mater 16(12):961–966. https://doi.org/10.1002/ADMA.200306111

    Article  CAS  Google Scholar 

  109. Akin D, Sturgis J, Ragheb K, Sherman D, Burkholder K, Robinson JP, Bhunia AK, Mohammed S, Bashir R (2007) Bacteria-mediated delivery of nanoparticles and cargo into cells. Nat Nanotechnol 2(7):441–449. https://doi.org/10.1038/NNANO.2007.149

    Article  PubMed  CAS  Google Scholar 

  110. Remaut K, Lucas B, Braeckmans K, Demeester J, de Smedt SC (2007) Pegylation of liposomes favours the endosomal degradation of the delivered phosphodiester oligonucleotides. J Controlled Release: Official J Controlled Release Soc 117(2):256–266. https://doi.org/10.1016/J.JCONREL.2006.10.029

    Article  CAS  Google Scholar 

  111. Zhang LW, Bäumer W, Monteiro-Riviere NA (2011) Cellular uptake mechanisms and toxicity of quantum dots in dendritic cells. Nanomedicine (Lond) 6(5):777. https://doi.org/10.2217/NNM.11.73

    Article  PubMed  CAS  Google Scholar 

  112. Zhang LW, Monteiro-Riviere NA (2009) Mechanisms of quantum dot nanoparticle cellular uptake. Toxicol Sci: An Official J Soc Toxicol 110(1):138–155. https://doi.org/10.1093/TOXSCI/KFP087

    Article  CAS  Google Scholar 

  113. Abdellatif AAH, Abou-Taleb HA, Abd El Ghany AA, Lutz I, Bouazzaoui A (2018) Targeting of somatostatin receptors expressed in blood cells using quantum dots coated with vapreotide. Saudi Pharmaceutical J: SPJ 26(8):1162. https://doi.org/10.1016/J.JSPS.2018.07.004

    Article  PubMed  PubMed Central  Google Scholar 

  114. Liu L, Jiang H, Dong J, Zhang W, Dang G, Yang M, Li Y, Chen H, Ji H, Dong L (2020) PEGylated MoS2 quantum dots for traceable and pH-responsive chemotherapeutic drug delivery. Colloids Surf. B, Biointerfaces 185. https://doi.org/10.1016/J.COLSURFB.2019.110590

  115. Khalil IA, Kogure K, Akita H, Harashima H (2006) Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol Rev 58(1):32–45. https://doi.org/10.1124/PR.58.1.8

    Article  PubMed  CAS  Google Scholar 

  116. Allen CM, Sharman WM, van Lier JE (2012) Current status of phthalocyanines in the photodynamic therapy of cancer. https://doi.org/10.1002/JPP.324

  117. Samia ACS, Chen X, Burda C (2003) Semiconductor quantum dots for photodynamic therapy. J Am Chem Soc 125(51):15736–15737. https://doi.org/10.1021/JA0386905

    Article  PubMed  CAS  Google Scholar 

  118. Bakalova R, Ohba H, Zhelev Z, Nagase T, Jose R, Ishikawa M, Baba Y (2004) Quantum dot anti-CD conjugates: are they potential photosensitizers or potentiators of classical photosensitizing agents in photodynamic therapy of cancer? Nano Lett 4(9):1567–1573. https://doi.org/10.1021/NL049627W

    Article  CAS  Google Scholar 

  119. Du T, Liang J, Dong N, Liu L, Fang L, Xiao S, Han H (2016) Carbon dots as inhibitors of virus by activation of type I interferon response. Carbon 110:278–285. https://doi.org/10.1016/J.CARBON.2016.09.032

    Article  CAS  Google Scholar 

  120. Gonzalez AC, Costa TF, Andrade ZD, Medrado AR (2016) Wound healing—a literature review. Anais Brasileiros de Dermatologia 91(5). https://doi.org/10.1590/ABD1806-4841.20164741

  121. Guo S, DiPietro LA (2010) Factors affecting wound healing. J Dent Res 89(3):219–229. https://doi.org/10.1177/0022034509359125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Sorg H, Tilkorn DJ, Hager S, Hauser J, Mirastschijski U (2017) Skin wound healing: an update on the current knowledge and concepts. Eur Surg Res. Europaische Chirurgische Forschung. Recherches Chirurgicales Europeennes 58(1–2). https://doi.org/10.1159/000454919

  123. Adnan M, Obyedul Kalam Azad M, Madhusudhan A, Saravanakumar K, Hu X, Wang MH, Ha CD (2020) Simple and cleaner system of silver nanoparticle synthesis using kenaf seed and revealing its anticancer and antimicrobial potential. Nanotechnology 31(26). https://doi.org/10.1088/1361-6528/ab7d72

  124. Loomba L, Scarabelli T (2013) Metallic nanoparticles and their medicinal potential. Part II: aluminosilicates, nanobiomagnets, quantum dots and cochleates. Therapeutic Deliv 4(9): 1179–1196. https://doi.org/10.4155/TDE.13.74

  125. Matea CT, Mocan T, Tabaran F, Pop T, Mosteanu O, Puia C, Iancu C, Mocan L (2017) Quantum dots in imaging, drug delivery and sensor applications. Int J Nanomed 12:5421–5431. https://doi.org/10.2147/IJN.S138624

    Article  CAS  Google Scholar 

  126. Rafieerad A, Yan W, Lester Sequiera G, Sareen N, Abu-El-Rub E, Moudgil M, Dhingra S, Rafieerad A, Yan W, Sequiera GL, Sareen N, Abu-El-Rub E, Moudgil M, Dhingra S (2019) Application of Ti3C2 MXene quantum dots for immunomodulation and regenerative medicine. Adv Healthcare Mater 8(16):1900569. https://doi.org/10.1002/ADHM.201900569

    Article  Google Scholar 

  127. Romoser AA, Chen PL, Berg JM, Seabury C, Ivanov I, Criscitiello Michael F, Sayes CM (2011) Quantum dots trigger immunomodulation of the NFκB pathway in human skin cells. Mol Immunol 48(12–13): 1349. https://doi.org/10.1016/J.MOLIMM.2011.02.009

  128. Shereema RM, Sruthi TV, Kumar VBS, Rao TP, Shankar SS (2015) Angiogenic profiling of synthesized carbon quantum dots. Biochemistry, 54(41): 6352–6356.https://doi.org/10.1021/ACS.BIOCHEM.5B00781/ASSET/IMAGES/LARGE/BI-2015-00781Q_0009.JPEG

  129. Mohamad N, Loh EYX, Fauzi MB, Ng MH, Mohd Amin MCI (2019) In vivo evaluation of bacterial cellulose/acrylic acid wound dressing hydrogel containing keratinocytes and fibroblasts for burn wounds. Drug Deliv Transl Res 9(2):444–452. https://doi.org/10.1007/S13346-017-0475-3

    Article  PubMed  CAS  Google Scholar 

  130. Xiang Y, Mao C, Liu X, Cui Z, Jing D, Yang X, Liang Y, Li Z, Zhu S, Zheng Y, Yeung KWK, Zheng D, Wang X, Wu S (2019) Rapid and superior bacteria killing of carbon quantum dots/ZnO decorated injectable folic acid-conjugated PDA hydrogel through dual-light triggered ROS and membrane permeability. Small 15(22):1900322. https://doi.org/10.1002/SMLL.201900322

    Article  Google Scholar 

  131. Haghshenas M, Hoveizi E, Mohammadi T, Kazemi Nezhad SR (2019) Use of embryonic fibroblasts associated with graphene quantum dots for burn wound healing in Wistar rats. Vitro Cellular Dev Biol. Animal 55(4): 312–322. https://doi.org/10.1007/S11626-019-00331-W

  132. Malmir S, Karbalaei A, Pourmadadi M, Hamedi J, Yazdian F, Navaee M (2020) Antibacterial properties of a bacterial cellulose CQD-TiO2 nanocomposite. Carbohydrate Polym 234. https://doi.org/10.1016/J.CARBPOL.2020.115835

  133. Liang Y, Wang M, Zhang Z, Ren G, Liu Y, Wu S, Shen J (2019) Facile synthesis of ZnO QDs@GO-CS hydrogel for synergetic antibacterial applications and enhanced wound healing. Undefined, 378.https://doi.org/10.1016/J.CEJ.2019.122043

  134. Demidova-Rice TN, Durham JT, Herman IM (2012) Wound healing angiogenesis: innovations and challenges in acute and chronic wound healing. Adv Wound Care 1(1):17–22. https://doi.org/10.1089/WOUND.2011.0308

    Article  Google Scholar 

  135. Balakrishnan S, Bhat FA, Raja Singh P, Mukherjee S, Elumalai P, Das S, Patra CR, Arunakaran J (2016) Gold nanoparticle-conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2-mediated pathway in breast cancer. Cell Prolif 49(6):678–697. https://doi.org/10.1111/CPR.12296

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Shibuya M (2011) Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti- and pro-angiogenic therapies. Genes Cancer 2(12):1097–1105. https://doi.org/10.1177/1947601911423031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Ting D, Dong N, Fang L, Lu J, Bi J, Xiao S, Han H (2018) Multisite inhibitors for enteric coronavirus: antiviral cationic carbon dots based on curcumin. ACS Appl Nano Mater. https://doi.org/10.1021/ACSANM.8B00779

    Article  Google Scholar 

  138. Huang HT, Lin HJ, Huang HJ, Huang CC, Lin JHY, Chen LL (2020) Synthesis and evaluation of polyamine carbon quantum dots (CQDs) in Litopenaeus vannamei as a therapeutic agent against WSSV. Sci Rep 10(1): 1–11. https://doi.org/10.1038/s41598-020-64325-5

  139. Irmania N, Dehvari K, Chang JY (2022) Multifunctional MnCuInSe/ZnS quantum dots for bioimaging and photodynamic therapy. J Biomater Appl 36(9):1617–1628. https://doi.org/10.1177/08853282211068959/ASSET/IMAGES/LARGE/10.1177_08853282211068959-FIG2.JPEG

    Article  PubMed  CAS  Google Scholar 

  140. Yousefieh N, Khalatbari F, Masoumeh Ghoreishi S, Seyedhamzeh M, Davachi Omoomi F, Saffari M, Ashrafi S, Esmaeil Sadat Ebrahimi S, Mirzaei M, Shafiee Ardestani M (2022) Synthesis and characterization of new magnetofluorescent silicon dot for theranostic application. https://doi.org/10.1155/2022/5592903

  141. Jiao M, Wang Y, Wang W, Zhou X, Xu Z, Xing Y, Chen L, Zhang Y, Chen M, Xu K, Zheng S (2022) Gadolinium doped red emissive carbon dots as targeted theranostic agents for fluorescence and MR imaging guided cancer phototherapy. https://doi.org/10.1016/j.cej.2022.135965

  142. Mclister A, Casimero C, Mcconville A, Taylor CM, Lawrence CL, Smith RB, Mathur A, Davis J (n.d.) Design of a smart sensor mesh for the measurement of pH in ostomy applications. J Mater Sci. https://doi.org/10.1007/s10853-019-03600-x

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narayan Chandra Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, S., Pandey, P.K., Singh, H., Yadav, I., Purohit, S.D., Mishra, N.C. (2024). Quantum Dots for Theranostic Applications. In: Madhusudhan, A., Purohit, S.D., Prasad, R., Husen, A. (eds) Functional Smart Nanomaterials and Their Theranostics Approaches. Smart Nanomaterials Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-6597-7_14

Download citation

Publish with us

Policies and ethics