Insight into the role of cholesterol in modulation of morphology and mechanical properties of CHO-K1 cells: An in situ AFM study

Abstract

Cholesterol plays a significant role in the organization of lipids and modulation of membrane dynamics in mammalian cells. However, the effect of cholesterol depletion on the eukaryotic cell membranes seems controversial. In this study, the effects of cholesterol on the topography and mechanical behaviors of CHO-K1 cells with manipulated membrane cholesterol contents were investigated by atomic force microscopy (AFM) technique. Here, we found that the depletion of cholesterol in cell membranes could increase the membrane stiffness, reduce the cell height as well as promote cell retraction and detachment from the surface, whereas the cholesterol restoration could reverse the effect of cholesterol depletion on the membrane stiffness. Increased methyl-β-cyclodextrin levels and incubation time could significantly increase Young’s modulus and degree of stiffing on cell membrane and cytoskeleton. This research demonstratede importance of cholesterol in regulating the dynamics of cytoskeleton-mediated processes. AFM technique offers excellent advantages in the dynamic monitoring of the change in membranes mechanical properties and behaviors during the imaging process. This promising technology can be utilized in studying the membrane properties and elucidating the underlying mechanism of distinct cells in the near-native environment.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    de Oliveira Andrade L. Understanding the role of cholesterol in cellular biomechanics and regulation of vesicular trafficking: The power of imaging. Biomedical Spectroscopy and Imaging, 2016, 5 (s1): S101–S117

    Google Scholar 

  2. 2.

    Evangelisti E, Cecchi C, Cascella R, Sgromo C, Becatti M, Dobson C M, Chiti F, Stefani M. Membrane lipid composition and its physicochemical properties define cell vulnerability to aberrant protein oligomers. Journal of Cell Science, 2012, 125(10): 2416–2427

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Redondo-Morata L, Giannotti M I, Sanz F. Influence of cholesterol on the phase transition of lipid bilayers: A temperature-controlled force spectroscopy study. Langmuir, 2012, 28(35): 12851–12860

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Zhao L, Temelli F. Preparation of liposomes using supercritical carbon dioxide via depressurization of the supercritical phase. Journal of Food Engineering, 2015, 158: 104–112

    CAS  Article  Google Scholar 

  5. 5.

    Magarkar A, Dhawan V, Kallinteri P, Viitala T, Elmowafy M, Rog T, Bunker A. Cholesterol level affects surface charge of lipid membranes in saline solution. Scientific Reports, 2014, 4: 2045–2322

    Google Scholar 

  6. 6.

    Zhao L, Temelli F, Curtis J M, Chen L. Encapsulation of lutein in liposomes using supercritical carbon dioxide. Food Research International, 2017, 100: 168–179

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    de Meyer F, Smit B. Effect of cholesterol on the structure of a phospholipid bilayer. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(10): 3654–3658

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Sułkowski W, Pentak D, Nowak K, Sułkowska A. The influence of temperature, cholesterol content and pH on liposome stability. Journal of Molecular Structure, 2005, 744: 737–747

    Article  CAS  Google Scholar 

  9. 9.

    Zhao L, Temelli F, Curtis J M, Chen L. Preparation of liposomes using supercritical carbon dioxide technology: Effects of phospholipids and sterols. Food Research International, 2015, 77: 63–72

    CAS  Article  Google Scholar 

  10. 10.

    Zhao L, Temelli F. Preparation of liposomes using a modified supercritical process via depressurization of liquid phase. Journal of Supercritical Fluids, 2015, 100: 110–120

    CAS  Article  Google Scholar 

  11. 11.

    Khatibzadeh N, Spector A A, Brownell W E, Anvari B. Effects of plasma membrane cholesterol level and cytoskeleton F-actin on cell protrusion mechanics. PLoS One, 2013, 8(2): e57147

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Mañes S, Martínez-A C. Cholesterol domains regulate the actin cytoskeleton at the leading edge of moving cells. Trends in Cell Biology, 2004, 14(6): 275–278

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Sun M, Northup N, Marga F, Huber T, Byfield F J, Levitan I, Forgacs G. The effect of cellular cholesterol on membranecytoskeleton adhesion. Journal of Cell Science, 2007, 120(13): 2223–2231

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Norman L L, Oetama R J, Dembo M, Byfield F, Hammer D A, Levitan I, Aranda-Espinoza H. Modification of cellular cholesterol content affects traction force, adhesion and cell spreading. Cellular and Molecular Bioengineering, 2010, 3(2): 151–162

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Yang Y T, Liao J D, Lin C C K, Chang C T, Wang S H, Ju M S. Characterization of cholesterol-depleted or-restored cell membranes by depth-sensing nano-indentation. Soft Matter, 2012, 8(3): 682–687

    CAS  Article  Google Scholar 

  16. 16.

    Kilbride P, Woodward H J, Tan K B, Thanh N T, Chu K E, Minogue S, Waugh MG. Modeling the effects of cyclodextrin on intracellular membrane vesicles from Cos-7 cells prepared by sonication and carbonate treatment. PeerJ, 2015, 3: e1351

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  17. 17.

    Zidovetzki R, Levitan I. Use of cyclodextrins to manipulate plasma membrane cholesterol content: Evidence, misconceptions and control strategies. Biochimica et Biophysica Acta (BBA)—Biomembranes, 2007, 1768(6): 1311–1324

    CAS  Article  Google Scholar 

  18. 18.

    Christian A, Haynes M, Phillips M, Rothblat G. Use of cyclodextrins for manipulating cellular cholesterol content. Journal of Lipid Research, 1997, 38(11): 2264–2272

    CAS  PubMed  Google Scholar 

  19. 19.

    Romanenko V G, Fang Y, Byfield F, Travis A J, Vandenberg C A, Rothblat G H, Levitan I. Cholesterol sensitivity and lipid raft targeting of Kir2. 1 channels. Biophysical Journal, 2004, 87(6): 3850–3861

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Mahammad S, Parmryd I. Cholesterol depletion using methylcyclodextrin. Methods in Membrane Lipids, 2015: 91–102

    Google Scholar 

  21. 21.

    Romanenko V G, Rothblat G H, Levitan I. Modulation of endothelial inward-rectifier K+ current by optical isomers of cholesterol. Biophysical Journal, 2002, 83(6): 3211–3222

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Levitan I, Christian A E, Tulenko T N, Rothblat G H. Membrane cholesterol content modulates activation of volume-regulated anion current in bovine endothelial cells. Journal of General Physiology, 2000, 115(4): 405–416

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Niu S L, Mitchell D C, Litman B J. Manipulation of cholesterol levels in rod disk membranes by methyl-β-cyclodextrin effects on receptor activation. Journal of Biological Chemistry, 2002, 277(23): 20139–20145

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Klein U, Gimpl G, Fahrenholz F. Alteration of the myometrial plasma membrane cholesterol content with β-cyclodextrin modulates the binding affinity of the oxytocin receptor. Biochemistry, 1995, 34(42): 13784–13793

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Roduit C, van der Goot F G, De Los Rios P, Yersin A, Steiner P, Dietler G, Catsicas S, Lafont F, Kasas S. Elastic membrane heterogeneity of living cells revealed by stiff nanoscale membrane domains. Biophysical Journal, 2008, 94(4): 1521–1532

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Bronder A M, Bieker A, Elter S, Etzkorn M, Häussinger D, Oesterhelt F. Oriented membrane protein reconstitution into tethered lipid membranes for AFM force spectroscopy. Biophysical Journal, 2016, 111(9): 1925–1934

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Casuso I, Khao J, Chami M, Paul-Gilloteaux P, Husain M, Duneau J P, Stahlberg H, Sturgis J N, Scheuring S. Characterization of the motion of membrane proteins using high-speed atomic force microscopy. Nature Nanotechnology, 2012, 7(8): 525–529

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Hutter J L, Bechhoefer J. Calibration of atomic-force microscope tips. Review of Scientific Instruments, 1993, 64(7): 1868–1873

    CAS  Article  Google Scholar 

  29. 29.

    Sneddon I N. The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. International Journal of Engineering Science, 1965, 3(1): 47–57

    Article  Google Scholar 

  30. 30.

    Matzke R, Jacobson K, Radmacher M. Direct, high-resolution measurement of furrow stiffening during division of adherent cells. Nature Cell Biology, 2001, 3(6): 607–610

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Emad A, Heinz W F, Antonik M D, D’Costa N P, Nageswaran S, Schoenenberger C A, Hoh J H. Relative microelastic mapping of living cells by atomic force microscopy. Biophysical Journal, 1998, 74(3): 1564–1578

    Article  Google Scholar 

  32. 32.

    Lam R S, Shaw A R, Duszyk M. Membrane cholesterol content modulates activation of BK channels in colonic epithelia. Biochimica et Biophysica Acta (BBA)—Biomembranes, 2004, 1667(2): 241–248

    CAS  Article  Google Scholar 

  33. 33.

    Toselli M, Biella G, Taglietti V, Cazzaniga E, Parenti M. Caveolin-1 expression and membrane cholesterol content modulate N-type calcium channel activity in NG108-15 cells. Biophysical Journal, 2005, 89(4): 2443–2457

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Oh H, Mohler E R III, Tian A, Baumgart T, Diamond S L. Membrane cholesterol is a biomechanical regulator of neutrophil adhesion. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29(9): 1290–1297

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Corvera S, DiBonaventura C, Shpetner H S. Cell confluencedependent remodeling of endothelial membranes mediated by cholesterol. Journal of Biological Chemistry, 2000, 275(40): 31414–31421

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Frankel D, Pfeiffer J, Surviladze Z, Johnson A, Oliver J, Wilson B, Burns A. Revealing the topography of cellular membrane domains by combined atomic force microscopy/fluorescence imaging. Biophysical Journal, 2006, 90(7): 2404–2413

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Kwik J, Boyle S, Fooksman D, Margolis L, Sheetz M P, Edidin M. Membrane cholesterol, lateral mobility, and the phosphatidylinositol 4,5-bisphosphate-dependent organization of cell actin. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(24): 13964–13969

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Byfield F J, Tikku S, Rothblat G H, Gooch K J, Levitan I. OxLDL increases endothelial stiffness, force generation, and network formation. Journal of Lipid Research, 2006, 47(4): 715–723

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Zhang X, Hurng J, Rateri D L, Daugherty A, Schmid-Schönbein G W, Shin H Y. Membrane cholesterol modulates the fluid shear stress response of polymorphonuclear leukocytes via its effects on membrane fluidity. American Journal of Physiology. Cell Physiology, 2011, 301(2): C451–C460

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Borbiev T, Radel C, Rizzo V. Participation of caveolae in β1 integrin-mediated mechanotransduction. FASEB Journal, 2007, 21 (6): A752–A752

    Google Scholar 

  41. 41.

    Qi Y, Andolfi L, Frattini F, Mayer F, Lazzarino M, Hu J. Membrane stiffening by STOML3 facilitates mechanosensation in sensory neurons. Nature Communications, 2015, 6(1): 8512

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Byfield F J, Aranda-Espinoza H, Romanenko V G, Rothblat G H, Levitan I. Cholesterol depletion increases membrane stiffness of aortic endothelial cells. Biophysical Journal, 2004, 87(5): 3336–3343

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Hissa B, Pontes B, Roma P M S, Alves A P, Rocha C D, Valverde T M, Aguiar P H N, Almeida F P, Guimaraes A J, Guatimosim C, et al. Membrane cholesterol removal changes mechanical properties of cells and induces secretion of a specific pool of lysosomes. PLoS One, 2013, 8(12): e82988

    Google Scholar 

  44. 44.

    Brown R E. Sphingolipid organization in biomembranes: What physical studies of model membranes reveal. Journal of Cell Science, 1998, 111(1): 1–9

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Pralle A, Keller P, Florin E L, Simons K, Hörber J H. Sphingolipidcholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. Journal of Cell Biology, 2000, 148(5): 997–1008

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Wakatsuki T, Schwab B, Thompson N C, Elson E L. Effects of cytochalasin D and latrunculin B on mechanical properties of cells. Journal of Cell Science, 2001, 114(5): 1025–1036

    CAS  PubMed  Google Scholar 

  47. 47.

    Khatibzadeh N, Gupta S, Farrell B, Brownell WE, Anvari B. Effects of cholesterol on nano-mechanical properties of the living cell plasma membrane. Soft Matter, 2012, 8(32): 8350–8360

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Zhang L, Bennett W F D, Zheng T, Ouyang P K, Ouyang X P, Qiu X Q, Luo A Q, Karttunen M, Chen P. Effect of cholesterol on cellular uptake of cancer drugs pirarubicin and ellipticine. Journal of Physical Chemistry B, 2016, 120(12): 3148–3156

    CAS  Article  Google Scholar 

  49. 49.

    Ramprasad O, Srinivas G, Rao K S, Joshi P, Thiery J P, Dufour S, Pande G. Changes in cholesterol levels in the plasma membrane modulate cell signaling and regulate cell adhesion and migration on fibronectin. Cytoskeleton, 2007, 64(3): 199–216

    CAS  Article  Google Scholar 

  50. 50.

    López C A, de Vries A H, Marrink S J. Molecular mechanism of cyclodextrin mediated cholesterol extraction. PLoS Computational Biology, 2011, 7(3): e1002020

    PubMed  PubMed Central  Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely appreciate the financial support by the Natural Sciences and Engineering Research Council of Canada Discovery Grants Program as well as the Program of Scientific Innovation Research of College Graduates in Jiangsu Province (No. CXZZ13_0455). The authors also thank Prof. Zhaobing Gao in the Shanghai Institute of Materia Medica of Chinese Academy of Science for providing the Biocatalyst AFM and related supports.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pu Chen.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Zhao, L., Ouyang, P. et al. Insight into the role of cholesterol in modulation of morphology and mechanical properties of CHO-K1 cells: An in situ AFM study. Front. Chem. Sci. Eng. 13, 98–107 (2019). https://doi.org/10.1007/s11705-018-1775-y

Download citation

Keywords

  • cholesterol
  • methyl-β-cyclodextrin
  • atomic force microscopy
  • Young’s modulus
  • CHO-K1 cell