Skip to main content
Log in

Structural Rearrangements in CHO Cells After Disruption of Individual Cytoskeletal Elements and Plasma Membrane

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Cellular structural integrity is provided primarily by the cytoskeleton, which comprises microtubules, actin filaments, and intermediate filaments. The plasma membrane has been also recognized as a mediator of physical forces, yet its contribution to the structural integrity of the cell as a whole is less clear. In order to investigate the relationship between the plasma membrane and the cytoskeleton, we selectively disrupted the plasma membrane and each of the cytoskeletal elements in Chinese hamster ovary cells and assessed subsequent changes in cellular structural integrity. Confocal microscopy was used to visualize cytoskeletal rearrangements, and optical tweezers were utilized to quantify membrane tether extraction. We found that cholesterol depletion from the plasma membrane resulted in rearrangements of all cytoskeletal elements. Conversely, the state of the plasma membrane, as assessed by tether extraction, was affected by disruption of any of the cytoskeletal elements, including microtubules and intermediate filaments, which are located mainly in the cell interior. The results demonstrate that, besides the cytoskeleton, the plasma membrane is an important contributor to cellular integrity, possibly by acting as an essential framework for cytoskeletal anchoring. In agreement with the tensegrity model of cell mechanics, our results support the notion of the cell as a prestressed structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CSK:

Cytoskeleton

PM:

Plasma membrane

MT:

Microtubules

IF:

Intermediate filaments

CHO:

Chinese hamster ovary

MβCD:

Methyl-β-cyclodextrin

FTE:

The force that is needed for membrane tether extraction

References

  1. Gauthier, N. C., Masters, T. A., & Sheetz, M. P. (2012). Mechanical feedback between membrane tension and dynamics. Trends in Cell Biology, 22, 527–535.

    Article  CAS  PubMed  Google Scholar 

  2. Prabhune, M., Belge, G., Dotzauer, A., Bullerdiek, J., & Radmacher, M. (2012). Comparison of mechanical properties of normal and malignant thyroid cells. Micron, 43, 1267–1272.

    Article  PubMed  Google Scholar 

  3. Tseng, Y., Kole, T. P., Lee, J. S., Fedorov, E., Almo, S. C., Schafer, B. W., & Wirtz, D. (2005). How actin crosslinking and bundling proteins cooperate to generate an enhanced cell mechanical response. Biochemical and Biophysical Research Communications, 19, 183–192.

    Article  Google Scholar 

  4. Pesen, D., & Hoh, J. H. (2005). Micromechanical architecture of the endothelial cell cortex. Biophysical Journal, 88, 670–679. doi:10.1529/biophysy.104.049965.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Heidemann, S. R., & Wirtz, D. (2004). Towards a regional approach to cell mechanics. Trends in Cell Biology, 14, 160–166.

    Article  CAS  PubMed  Google Scholar 

  6. Salbreux, G., Charras, G., & Paluch, E. (2012). Actin cortex mechanics and cellular morphogenesis. Trends in Cell Biology, 22, 536–545.

    Article  CAS  PubMed  Google Scholar 

  7. Nambiar, R., McConnell, R. E., & Tyska, M. J. (2009). Control of cell membrane tension by myosin-I. PNAS, 106, 11972–11977.

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Lieleg, O., Claessens, M. M. A. E., & Bausch, A. R. (2010). Structure and dynamics of cross-linked actin networks. Soft Matter, 6, 218–225.

    Article  CAS  Google Scholar 

  9. Evans, E., & Kukan, B. (1984). Passive material behavior of granulocytes based on large deformation and recovery after deformation tests. Blood, 64, 1028–1035.

    CAS  PubMed  Google Scholar 

  10. Gauthier, N. C., Fardin, M. A., Roca-Cusachs, P., & Sheetz, M. P. (2012). Temporary increase in plasma membrane tension coordinates the activation of exocytosis and contraction during cell spreading. Proceedings of the National Academy of Sciences of the United States of America, 108, 14467–14472.

    Google Scholar 

  11. Diz-Munoz, A., Fletcher, D. A., & Weiner, O. D. (2013). Use the force: Membrane tension as an organizer of cell shape and motility. Trend in Cell Biology, 23, 47–53.

    CAS  Google Scholar 

  12. Dai, J., & Sheetz, M. P. (1999). Membrane tether formation from blebbing cells. Biophysical Journal, 77, 3363–3370.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Raucher, D., & Sheetz, M. P. (2000). Cell spreading and lamellipodial extension rate is regulated by membrane tension. Journal of Cell Biology, 148, 127–136.

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Titushkin, I., & Cho, M. (2006). Distinct membrane mechanical properties of human mesenchymal stem cells determined using laser optical tweezers. Biophysical Journal, 90, 2582–2591.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Sinha, B., Köster, D., Ruez, R., Gonnord, P., Bastiani, M., Abankwa, D., Stan, R. V., Butler-Browne, G., Vedie, B., Johannes, L., Morone, N., Parton, R. G., Raposo, G., Sens, P., Lamaze, C., & Nassoy, P. (2011). Cells respond to mechanical stress by rapid disassembly of caveolae. Cell, 144, 402–413.

  16. Khatibzadeh, N., Spector, A. A., Brownell, W. E., & Anvari, B. (2013). Effects of plasma membrane cholesterol level and cytoskeleton F-actin on cell protrusion mechanics. PLoS ONE, 8, e57147.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Rotsch, C., & Radmacher, M. (2000). Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: An atomic force microscopy study. Biophysical Journal, 78, 520–535.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Wang, N., & Ingber, D. E. (1994). Control of cytoskeletal mechanics by extracellular matrix, cell shape, and mechanical tension. Biophysical Journal, 66, 2181–2189.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Raucher, D., & Sheetz, M. P. (1999). Characteristics of membrane reservoir buffering membrane tension. Biophysical Journal, 77, 1992–2002.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Grundner, M., & Zemljič Jokhadar, Š. (2014). Cytoskeleton modification and cholesterol depletion affect membrane properties and caveolae positioning of CHO cells. Journal of Membrane Biology, 247, 201–210.

    CAS  PubMed  Google Scholar 

  21. Doherty, G. J., & McMahon, H. T. (2008). Mediation, modulation, and consequences of membrane-cytoskeleton interactions. Annual Review of Biophysics, 37, 65–95.

    Article  CAS  PubMed  Google Scholar 

  22. Hoffman, B. D., Massiera, G., Van Citters, K. M., & Crocker, J. C. (2006). The consensus mechanics of cultured mammalian cells. PNAS, 103, 10259–10264.

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Ingber, D. E. (1993). Cellular tensegrity: Defining new rules of biological design that govern the cytoskeleton. Journal of Cell Science, 104, 613–627.

    PubMed  Google Scholar 

  24. Ingber, D. E. (2003). Tensegrity I. Cell structure and hierarchical systems biology. Journal of Cell Science, 116, 1157–1173.

    Article  CAS  PubMed  Google Scholar 

  25. Ingber, D. E., Heidemann, S. R., Lamoureux, P., & Buxbaum, R. E. (2000). Opposing views on tensegrity as a structural framework for understanding cell mechanics. Journal of Applied Physiology, 89, 1663–1678.

    CAS  PubMed  Google Scholar 

  26. Coué, M., Brenner, S. L., Spector, I., & Korn, E. D. (1987). Inhibition of actin polymerization by latrunculin A. FEBS Letters, 213, 316–318.

    Article  PubMed  Google Scholar 

  27. Jordan, M. A., Thrower, D., & Wilson, L. (1992). Effects of vinblastine, podophyllotoxin and nocodazole on mitotic spindles implication for the role of microtubule dynamics in mitosis. Journal of Cell Science, 102, 401–416.

    CAS  PubMed  Google Scholar 

  28. Eckert, B. S. (1985). Alteration of intermediate filament distribution in PtK1 cells by acrylamide. European Journal of Cell Biology, 37, 169–174.

    CAS  PubMed  Google Scholar 

  29. Ilangumaran, S., & Hoessli, D. (1998). Effects of cholesterol depletion by cyclodextrin on the sphingolipid microdomains of the plasma membrane. Biochemical Journal, 335, 433–440.

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Gauthier, N. C., Rossier, O. M., Mathur, A., Hone, J. C., & Sheetz, M. P. (2009). Plasma membrane area increases with spread area by exocytosis of a GPI-anchored protein compartment. Molecular Biology of the Cell, 20, 3261–3272.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Ballestrem, C., Wehrle-Haller, B., Hinz, B., & Imhof, B. A. (2000). Actin-dependent lamellipodia formation and microtubule-dependent tail retraction control-directed cell migration. Molecular Biology of the Cell, 11, 2999–3012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Eriksson, J. E., Dechat, T., Grin, B., Helfand, B., Mendez, M., Pallari, H. M., & Goldman, R. D. (2009). Introducing intermediate filaments: From discovery to disease. Journal of Clinical Investigation, 119, 1763–1771.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Singer, W., Bernet, S., Hecker, N., & Ritsch-Marte, M. (2000). Three-dimensional force calibration of optical tweezers. Journal of Modern Optics, 47, 2921–2931.

    Article  CAS  Google Scholar 

  34. Byfield, F. J., Aranda-Espinoza, H., Romanenko, V. G., Rothblat, G. H., & Levitan, I. (2004). Cholesterol depletion increases membrane stiffness of aortic endothelial cells. Biophysical Journal, 87, 3336–3343.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Sun, M., Northup, N., Marga, F., Huber, T., Byfield, F. J., Levitan, I., & Forgacs, G. (2007). The effect of cellular cholesterol on membrane-cytoskeleton adhesion. Journal of Cell Science, 120, 2223–2231.

    Article  CAS  PubMed  Google Scholar 

  36. Cunningham, C. C. (1995). Actin polymerization and intracellular solvent flow in cell surface blabbing. Journal of Cell Biology, 129, 1589–1599.

    CAS  PubMed  Google Scholar 

  37. Arocena, M. (2006). Effect of acrylamide on the cytoskeleton and apoptosis of bovine lens epithelial cells. Cell Biology International, 30, 1007–1012.

    Article  CAS  PubMed  Google Scholar 

  38. Stamenović, D., & Wang, N. (2011). Stress Transmission within the Cell. Comprehensive Physiology, 1, 499–524.

    PubMed Central  PubMed  Google Scholar 

  39. Tolstonog, G. V., Sabasch, M., & Traub, P. (2002). Cytoplasmic intermediate filaments are stably associated with nuclear matrices and potentially modulate their DNA-binding function. DNA and Cell Biology, 21, 213–239.

    Article  CAS  PubMed  Google Scholar 

  40. Caille, N., Thoumine, O., Tardy, Y., & Meister, J. J. (2002). Contribution of the nucleus to the mechanical properties of endothelial cells. Journal of Biomechanics, 35, 177–187.

    Article  PubMed  Google Scholar 

  41. Byfield, F. J., Hoffman, B. D., Romanenko, V. G., Fang, Y., Crocker, J. C., & Levitan, I. (2006). Evidence for the role of cell stiffness in modulation of volume-regulated anion channels. Acta Physiologica (Oxford, England), 187, 285–294.

    CAS  Google Scholar 

  42. Wang, N., & Stamenović, D. (2000). Contribution of intermediate filaments to cell stiffness, stiffening, and growth. American Journal of Physiology. Cell Physiology, 279, C188–C194.

    CAS  PubMed  Google Scholar 

  43. Cary, R. B., Klymakowsky, M. W., Evans, R. M., Domingo, A., Dent, J. A., & Backhus, L. E. (1994). Vimentin's tail interacts with actin-containing structures in vivo. Journal of Cell Science, 107, 1609–1622.

    CAS  PubMed  Google Scholar 

  44. Yoon, M., Moir, R. D., Prahlad, V., & Goldman, R. D. (1998). Motile properties of vimentin intermediate filament networks in living cells. Journal of Cell Biology, 143, 147–157.

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Goldman, R. D., Khuon, S., Chou, Y. H., Opal, P., & Steinert, P. M. (1996). The function of intermediate filaments in cell shape and cytoskeletal integrity. Journal of Cell Biology, 134, 971–983.

    CAS  PubMed  Google Scholar 

  46. Wang, N. (1998). Mechanical interactions among cytoskeletal filaments. Hypertension, 32, 162–165.

    Article  CAS  PubMed  Google Scholar 

  47. Kolodney, M. S., & Elson, E. L. (1995). Contraction due to microtubule disruption is associated with increased phosphorylation of myosin regulatory light chain. Proceedings of the National Academy of Sciences of the United States of America, 92, 10252–10256.

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Gaus, K., LeLay, S., Balasubramanian, N., & Schwartz, M. A. (2006). Integrin-mediated adhesion regulates membrane order. Journal of Cell Biology, 174, 725–734.

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Van Meer, G., & de Kroon, A. I. P. M. (2011). Lipid map of the mammalian cell. Journal of Cell Science, 124, 5–8.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by Slovenian Research Agency Grant P1-0055.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Špela Zemljič Jokhadar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jokhadar, Š.Z., Derganc, J. Structural Rearrangements in CHO Cells After Disruption of Individual Cytoskeletal Elements and Plasma Membrane. Cell Biochem Biophys 71, 1605–1613 (2015). https://doi.org/10.1007/s12013-014-0383-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0383-9

Keywords

Navigation