Skip to main content
Log in

The influence of the NCO/OH ratio and the 1,6-hexanediol/dimethylol propionic acid molar ratio on the properties of waterborne polyurethane dispersions based on 1,5-pentamethylene diisocyanate

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

1,5-Pentamethylene diisocyanate, a novel aliphatic diisocyanate formed from bio-based 1,5-pentamethylenediamine, has been used as a hard segmented material to synthesize polyurethane. In this study, several waterborne polyurethane (WPU) dispersions have been successfully prepared by a prepolymer process from 1,5- pentamethylene diisocyanate poly(polyether) with different NCO/OH ratios and 1,6-hexanediol (HDO)/dimethylol propionic acid (DMPA) molar ratios. The Fourier transform infrared (FTIR) spectra, thermogravimetric analysis, differential scanning calorimetry, X-ray diffraction, and a mechanical tensile test were used to investigate the structures, thermal stability, phase separation, crystallinity, mechanical properties, and adhesive performance of the WPU dispersions. The FTIR results indicate that the degree of hydrogen bonding and the numbers of urea groups increase as the NCO/OH ratio and HDO/DMPA molar ratio increase. Furthermore, the phase separation increases and the thermal stability decreases as the NCO/OH ratio increases or the HDO/DMPA molar ratio decreases. Finally, WPU3.0-2.4 (NCO/OH = 3, HDO/DMPA = 2.4) exhibits a maximum tensile strength and shear strength, pointing to its possible use as an adhesive. These results could provide a very valuable reference for industrial applications of WPU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Garcia-Pacios V, Costa V, Colera M, Martin-Martinez J M. Waterborne polyurethane dispersions obtained with polycarbonate of hexanediol intended for use as coatings. Progress in Organic Coatings, 2011, 71(2): 136–146

    Article  CAS  Google Scholar 

  2. Krol P, Krol B, Kozakiewicz J, Zapotoczny S, Pilch-Pitera B, Kozdra S. Composites prepared from polyurethanes modified with silicone-acrylic nanopowders. Progress in Organic Coatings, 2015, 81: 72–79

    Article  CAS  Google Scholar 

  3. Aznar A C, Pardini O R, Amalvy J I. Glossy topcoat exterior paint formulations using water-based polyurethane/acrylic hybrid binders. Progress in Organic Coatings, 2006, 55(1): 43–49

    Article  CAS  Google Scholar 

  4. Chattopadhyay D K, Raju K V S N. Structural engineering of polyurethane coatings for high performance applications. Progress in Polymer Science, 2007, 32(3): 352–418

    Article  CAS  Google Scholar 

  5. Fang C Q, Zhou X, Yu Q, Liu S L, Guo D G, Yu R E, Hu J B. Synthesis and characterization of low crystalline waterborne polyurethane for potential application in water-based ink binder. Progress in Organic Coatings, 2014, 77(1): 61–71

    Article  CAS  Google Scholar 

  6. Miao S D, Sun L J, Wang P, Liu R N, Su Z G, Zhang S P. Soybean oil-based polyurethane networks as candidate biomaterials: Synthesis and biocompatibility. European Journal of Lipid Science and Technology, 2012, 114(10): 1165–1174

    Article  CAS  Google Scholar 

  7. Udagama R, Degrandi-Contraires E, Creton C, Graillat C, McKenna T F L, Bourgeat-Lami E. Synthesis of acrylic-polyurethane hybrid latexes by miniemulsion polymerization and their pressure-sensitive adhesive applications. Macromolecules, 2011, 44(8): 2632–2642

    Article  CAS  Google Scholar 

  8. Ali A, Yusoh K, Hasany S F. Synthesis and physicochemical behaviour of polyurethane-multiwalled carbon nanotubes nanocomposites based on renewable castor oil polyols. Journal of Nanomaterials, 2014, 2014: 564384

    Google Scholar 

  9. Ji D, Fang Z, He W, Zhang K, Luo Z Y, Wang T W, Guo K. Synthesis of soy-polyols using a continuous microflow system and preparation of soy-based polyurethane rigid foams. ACS Sustainable Chemistry & Engineering, 2015, 3(6): 1197–1204

    Article  CAS  Google Scholar 

  10. Bayer C. Das di-isocyanat-polyadditionsverfahren (Polyurethane). Angewandte Chemie, 1947, 59(9): 257–288 (in German)

    Article  Google Scholar 

  11. Kong X H, Liu G G, Curtis J M. Characterization of canola oil based polyurethane wood adhesives. International Journal of Adhesion and Adhesives, 2011, 31(6): 559–564

    Article  CAS  Google Scholar 

  12. Moubarik A, Allal A, Pizzi A, Charrier F, Charrier B. Characterization of a formaldehyde-free cornstarch-tannin wood adhesive for interior plywood. European Journal of Wood and Wood Products, 2010, 68(4): 427–433

    Article  CAS  Google Scholar 

  13. Tenorio-Alfonso A, Sanchez M C, Franco J M. Preparation, characterization and mechanical properties of bio-based polyurethane adhesives from isocyanate-functionalized cellulose acetate and castor oil for bonding wood. Polymers, 2017, 9(12): 132

    Article  CAS  PubMed Central  Google Scholar 

  14. Geurink P J A, Scherer T, Buter R, Steenbergen A, Henderiks H. A complete new design for waterborne 2-pack PUR coatings with robust application properties. Progress in Organic Coatings, 2006, 55(2): 119–127

    Article  CAS  Google Scholar 

  15. Melchiors M, Sonntag M, Kobusch C, Jurgens E. Recent developments in aqueous two-component polyurethane (2K-PUR) coatings. Progress in Organic Coatings, 2000, 40(1–4): 99–109

    Article  CAS  Google Scholar 

  16. Lai X J, Li X R, Wang L, Shen Y D. Synthesis and characterizations of waterborne polyurethane modified with 3-aminopropyltriethoxysilane. Polymer Bulletin, 2010, 65(1): 45–57

    Article  CAS  Google Scholar 

  17. Lu Y S, Larock R C. Soybean oil-based, aqueous cationic polyurethane dispersions: Synthesis and properties. Progress in Organic Coatings, 2010, 69(1): 31–37

    Article  CAS  Google Scholar 

  18. Zhou X, Li Y, Fang C Q, Li S J, Cheng Y L, Lei W Q, Meng X J. Recent advances in synthesis of waterborne polyurethane and their application in water-based ink: A review. Journal of Materials Science and Technology, 2015, 31(7): 708–722

    Article  CAS  Google Scholar 

  19. Sharma V, Kundu P P. Condensation polymers from natural oils. Progress in Polymer Science, 2008, 33(12): 1199–1215

    Article  CAS  Google Scholar 

  20. Garcia-Pacios V, Jofre-Reche J A, Costa V, Colera M, Martin-Martinez J M. Coatings prepared from waterborne polyurethane dispersions obtained with polycarbonates of 1,6-hexanediol of different molecular weights. Progress in Organic Coatings, 2013, 76(10): 1484–1493

    Article  CAS  Google Scholar 

  21. Lee S K, Kim B K. High solid and high stability waterborne polyurethanes via ionic groups in soft segments and chain termini. Journal of Colloid and Interface Science, 2009, 336(1): 208–214

    Article  CAS  PubMed  Google Scholar 

  22. Yang J, Gao Y L, Li J H, Ding MM, Chen F, Tan H, Fu Q. Synthesis and microphase separated structures of polydimethylsiloxane/ polycarbonate-based polyurethanes. RSC Advances, 2013, 3(22): 8291–8297

    Article  CAS  Google Scholar 

  23. Cakic S M, Ristic I S, Cincovitc M M, Nikolic N C, Nikolic L B, Cvetinov M J. Synthesis and properties biobased waterborne polyurethanes from glycolysis product of PET waste and poly (caprolactone) diol. Progress in Organic Coatings, 2017, 105: 111–112

    Article  CAS  Google Scholar 

  24. Somani K P, Kansara S S, Patel N K, Rakshit A K. Castor oil based polyurethane adhesives for wood-to-wood bonding. International Journal of Adhesion and Adhesives, 2003, 23(4): 269–275

    Article  CAS  Google Scholar 

  25. Yoon S S, Kim S C. Modification of aqueous polyurethane dispersions by polybutadiene. Journal of Applied Polymer Science, 2005, 95(5): 1062–1068

    Article  CAS  Google Scholar 

  26. Liu N, Zhao Y H, Kang M Q, Wang J W, Wang X K, Feng Y L, Yin N, Li Q F. The effects of the molecular weight and structure of polycarbonatediols on the properties of waterborne polyurethanes. Progress in Organic Coatings, 2015, 82: 46–56

    Article  CAS  Google Scholar 

  27. Du H, Zhao Y H, Li Q F, Wang J W, Kang M Q, Wang X K, Xiang H W. Synthesis and characterization of waterborne polyurethane adhesive from MDI and HDI. Journal of Applied Polymer Science, 2008, 110(3): 1396–1402

    Article  CAS  Google Scholar 

  28. Barszczewska-Rybarek I M. Characterization of urethane-dimethacrylate derivatives as alternative monomers for the restorative composite matrix. Dental Materials, 2014, 30(12): 1336–1344

    Article  CAS  PubMed  Google Scholar 

  29. Hidesaki T, Natsuji A, Nakagawa T, Kuwamura G, Hasegawa D, Yamasaki S, Sato K, Takeuchi H. US Patent, 20130079486A1, 2013–5-28

    Google Scholar 

  30. Głowinska E, Datta J. Bio polyetherurethane composites with high content of natural ingredients: Hydroxylated soybean oil based polyol, bio glycol and microcrystalline cellulose. Cellulose (London, England), 2016, 23(1): 581–592

    Google Scholar 

  31. Fu H, Liu K, Yan C, Chen W, Wang Y. Phase morphology and mechanical properties of aliphatic waterborne polyurethane-ureas: Effect of 1,6-hexamethylene diisocyanate (HDI)/isophorone diisocyanate (IPDI) ratio. Polymers & Polymer Composites, 2015, 23(3): 141–150

    Article  Google Scholar 

  32. Che J H, Cheon J M, Chun J H, Park C C, Lee Y H, Kim H D. Preparation and properties of emulsifier-/solventfree slightly crosslinked waterborne polyurethaneacrylic hybrid emulsions for footwear adhesives (III)-effect of trimethylol propane (TMP)/ethylene diamine (EDA) content. Journal of Adhesion Science and Technology, 2017, 31(17): 1872–1887

    Article  CAS  Google Scholar 

  33. Gallego R, Arteaga J F, Vaencia C, Diaz M J, Franco J M. Gel-like dispersions of HMDI-cross-linked lignocellulosic materials in castor oil: Toward completely renewable lubricating grease formulations. ACS Sustainable Chemistry & Engineering, 2015, 3(9): 2130–2141

    Article  CAS  Google Scholar 

  34. Yilgor I, Yilgor E, Das S, Wilkes G L. Time-dependent morphology development in segmented polyetherurea copolymers based on aromatic diisocyanates. Journal of Polymer Science. Part B, Polymer Physics, 2009, 47(5): 471–483

    Article  CAS  Google Scholar 

  35. Zhang Y L, Shao L S, Liu B, Wang F, Wang Y H. Effect of molecular weight of liquid polysulfide on water and organic solvent resistances of waterborne polyurethane/polysulfide copolymer. Progress in Organic Coatings, 2017, 112: 219–224

    Article  CAS  Google Scholar 

  36. Wang C B, Cooper S L. Morphology and properties of segmented polyether polyurethaneureas. Macromolecules, 1983, 16(5): 775–786

    Article  CAS  Google Scholar 

  37. Garcia-Pacios V, Costa V, Colera M, Martin-Martinez J M. Affect of polydispersity on the properties of waterborne polyurethane dispersions based on polycarbonate polyol. International Journal of Adhesion and Adhesives, 2010, 30(6): 456–465

    Article  CAS  Google Scholar 

  38. Zhang Y F, Zhou H W, Wang L, Jiang W Y, Soucek M D, Yi Y. Preparation and characterization of castor oil-based waterborne polyurethane crosslinked with 2-amino-2-(hydroxymethyl)-1,3-propanediol. Journal of Applied Polymer Science, 2017, 134(47): 134

    Google Scholar 

  39. Zhou X, Fang C Q, Yu Q, Yang R, Xie L, Cheng Y L, Li Y. Synthesis and characterization of waterborne polyurethane dispersion from glycolyzed products of waste polyethylene terephthalate used as soft and hard segment. International Journal of Adhesion and Adhesives, 2017, 74: 49–56

    Article  CAS  Google Scholar 

  40. Gao Z Z, Peng J, Zhong T H, Sun J, Wang X B, Yue C. Biocompatible elastomer of waterborne polyurethane based on castor oil and polyethylene glycol with cellulose nanocrystals. Carbohydrate Polymers, 2012, 87(3): 2068–2075

    Article  CAS  Google Scholar 

  41. Pechar T W, Wilkes G L, Zhou B, Luo N. Characterization of soy-based polyurethane networks prepared with different diisocyanates and their blends with petroleum-based polyols. Journal of Applied Polymer Science, 2007, 106(4): 2350–2362

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21576134 and 51503097), the National Key Research and Development Program of China (Grant No. 2016YFA0204300), and the Jiangsu Province Natural Science Foundation (No. BK20150244).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kequan Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, J., Lu, Q., Tan, W. et al. The influence of the NCO/OH ratio and the 1,6-hexanediol/dimethylol propionic acid molar ratio on the properties of waterborne polyurethane dispersions based on 1,5-pentamethylene diisocyanate. Front. Chem. Sci. Eng. 13, 80–89 (2019). https://doi.org/10.1007/s11705-018-1763-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-018-1763-2

Keywords

Navigation