Skip to main content
Log in

Recent advances toward high voltage, EC-free electrolytes for graphite-based Li-ion battery

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Lithium-ion batteries are a key technology in today’s world and improving their performances requires, in many cases, the use of cathodes operating above the anodic stability of state-of-the-art electrolytes based on ethylene carbonate (EC) mixtures. EC, however, is a crucial component of electrolytes, due to its excellent ability to allow graphite anode operation—also required for high energy density batteries—by stabilizing the electrode/electrolyte interface. In the last years, many alternative electrolytes, aiming at allowing high voltage battery operation, have been proposed. However, often, graphite electrode operation is not well demonstrated in these electrolytes. Thus, we review here the high voltage, EC-free alternative electrolytes, focusing on those allowing the steady operation of graphite anodes. This review covers electrolyte compositions, with the widespread use of additives, the change in main lithium salt, the effect of anion (or Li salt) concentration, but also reports on graphite protection strategies, by coatings or artificial solid electrolyte interphase (SEI) or by use of water-soluble binder for electrode processing as these can also enable the use of graphite in electrolytes with suboptimal intrinsic SEI formation ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U.S. Energy Information Administration. Annual Energy Outlook 2017 with projections to 2050, 2017, 1–64

  2. Lewis G N, Keyes F G. The potential of the lithium electrode. Journal of the American Chemical Society, 1913, 35(4): 340–344

    Article  CAS  Google Scholar 

  3. Harris W S. Electrochemical studies in cyclic esters. Dissertation for the Doctoral Degree. Berkeley, CA: University of California, 1958

    Book  Google Scholar 

  4. Jasinski R. Bibliography on the uses of propylene carbonate in high energy, density batteries. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1967, 15: 89–91

    Article  CAS  Google Scholar 

  5. Julien C, Mauger A, Vijh A, Zaghib K. Lithium batteries: Science and technology. Basel: Springer International Publishing, 2016, 1–27

    Book  Google Scholar 

  6. Winn D A, Steele B C H. Thermodynamic characterisation of nonstoichiometric titanium di-sulphide. Materials Research Bulletin, 1976, 11(5): 551–557

    Article  CAS  Google Scholar 

  7. Whittingham M S. Preparation of stoichiometric titanium disulfide. US Patent, 4007055, 1975–05–09

  8. Murphy D W, Trumbore F A. The chemistry of TiS and NbSe cathodes. Journal of the Electrochemical Society, 1976, 123(7): 960–964

    Article  CAS  Google Scholar 

  9. Armand M B. Chapter–Intercalation electrodes. Materials for Advanced Batteries. Boston, MA: Springer, 1980, 145–161

    Book  Google Scholar 

  10. Lazzari M, Scrosati B. A Cyclable Lithium organic electrolyte cell based on two intercalation electrodes. Journal of the Electrochemical Society, 1980, 127(3): 773–774

    Article  CAS  Google Scholar 

  11. Mizushima K, Jones P C, Wiseman P J, Goodenough J B. LixCoO2 (0<x<–1): A new cathode material for batteries of high energy density. Materials Research Bulletin, 1980, 15(6): 783–789

    Article  CAS  Google Scholar 

  12. Mizushima K, Jones P C, Wiseman P J, Goodenough J B. LixCoO2 (0<x≤1): A new cathode material for batteries of high energy density. Solid State Ionics, 1981, 3–4: 171–174

    Article  Google Scholar 

  13. Nagaura T, Nagamine M, Tanabe I, Miyamoto N. Solid state batteries with sulfide-based solid electrolytes. Progress in batteries and solar cells, 1989, 8: 84–88

    CAS  Google Scholar 

  14. Nagaura T, Tozawa K. Lithium ion rechargeable battery. Progress in Batteries and Solar Cells, 1990, 9: 209–212

    CAS  Google Scholar 

  15. Ozawa K. Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: The LiCoO2/C system. Solid State Ionics, 1994, 69(3–4): 212–221

    Article  CAS  Google Scholar 

  16. Fong R, von Sacken U, Dahn J R. Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. Journal of the Electrochemical Society, 1990, 137(7): 2009–2013

    Article  CAS  Google Scholar 

  17. Tarascon J M, Guyomard D. New electrolyte compositions stable over the 0 to 5 V voltage range and compatible with the Li1+xMn2O4/carbon Li-ion cells. Solid State Ionics, 1994, 69(3–4): 293–305

    Article  CAS  Google Scholar 

  18. Peled E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. Journal of the Electrochemical Society, 1979, 126(12): 2047–2051

    Article  CAS  Google Scholar 

  19. Peled E, Menkin S. Review—SEI: Past, present and future. Journal of the Electrochemical Society, 2017, 164(7): A1703–A1719

    Article  CAS  Google Scholar 

  20. Hess S, Wohlfahrt-Mehrens M, Wachtler M. Flammability of Liion battery electrolytes: Flash point and self-extinguishing time measurements. Journal of the Electrochemical Society, 2015, 162 (2): A3084–A3097

    Article  CAS  Google Scholar 

  21. Krueger S, Kloepsch R, Li J, Nowak S, Passerini S, Winter M. How do reactions at the anode/electrolyte interface determine the cathode performance in lithium-ion batteries? Journal of the Electrochemical Society, 2013, 160(4): A542–A548

    Article  CAS  Google Scholar 

  22. Vetter J, Novák P, Wagner M R, Veit C, Möller K C, Besenhard J O, Winter M, Wohlfahrt-Mehrens M, Vogler C, Hammouche A. Ageing mechanisms in lithium-ion batteries. Journal of Power Sources, 2005, 147(1–2): 269–281

    Article  CAS  Google Scholar 

  23. Bresser D, Paillard E, Passerini S. Chapter 7–Lithium-ion batteries (LIBs) for medium-and large-scale energy storage: Emerging cell materials and components. Advances in Batteries for Medium and Large-Scale Energy Storage. Cambridge: Woodhead Publishing, 2015, 213–289

    Chapter  Google Scholar 

  24. Wrodnigg G H, Besenhard J O, Winter M. Ethylene sulfite as electrolyte additive for lithium-ion cells with graphitic anodes. Journal of the Electrochemical Society, 1999, 146(2): 470–472

    Article  CAS  Google Scholar 

  25. Wrodnigg G H, Wrodnigg T M, Besenhard J O, Winter M. Propylene sulfite as film-forming electrolyte additive in lithium ion batteries. Electrochemistry Communications, 1999, 1(3–4): 148–150

    Article  CAS  Google Scholar 

  26. Simon B, Boeuve J P. Rechargeable lithium electrochemical cell. US Patent, 5626981, 1994–04–22

  27. Aurbach D, Gamolsky K, Markovsky B, Gofer Y, Schmidt M, Heider U. On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries. Electrochimica Acta, 2002, 47(9): 1423–1439

    Article  CAS  Google Scholar 

  28. Santner H J, Korepp C, Winter M, Besenhard J O, Möller K C. Insitu FTIR investigations on the reduction of vinylene electrolyte additives suitable for use in lithium-ion batteries. Analytical and Bioanalytical Chemistry, 2004, 379(2): 266–271

    Article  CAS  PubMed  Google Scholar 

  29. Aurbach D, Gnanaraj J S, Geissler W, Schmidt M. Vinylene carbonate and Li salicylatoborate as additives in LiPF3(CF2CF3)3 solutions for rechargeable Li-ion batteries. Journal of the Electrochemical Society, 2004, 151(1): A23–A30

    Article  CAS  Google Scholar 

  30. McMillan R, Slegr H, Shu Z X, Wang W. Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes. Journal of Power Sources, 1999, 81–82: 20–26

    Article  Google Scholar 

  31. Mogi R, Inaba M, Jeong S K, Iriyama Y, Abe T, Ogumi Z. Effects of some organic additives on lithium deposition in propylene carbonate. Journal of the Electrochemical Society, 2002, 149(12): A1578–A1583

    Article  CAS  Google Scholar 

  32. Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical Reviews, 2004, 104(10): 4303–4417

    Article  CAS  PubMed  Google Scholar 

  33. Xu K. Electrolytes and interphases in Li-ion batteries and beyond. Chemical Reviews, 2014, 114(23): 11503–11618

    Article  CAS  PubMed  Google Scholar 

  34. Zhang S S. A review on electrolyte additives for lithium-ion batteries. Journal of Power Sources, 2006, 162(2): 1379–1394

    Article  CAS  Google Scholar 

  35. Haregewoin A M, Wotango A S, Hwang B J. Electrolyte additives for lithium ion battery electrodes: Progress and perspectives. Energy & Environmental Science, 2016, 9(6): 1955–1988

    Article  CAS  Google Scholar 

  36. Sasaki T, Abe T, Iriyama Y, Inaba M, Ogumi Z. Suppression of an alkyl dicarbonate formation in Li-ion cells. Journal of the Electrochemical Society, 2005, 152(10): A2046–A2050

    Article  CAS  Google Scholar 

  37. Li B, Wang Y, Rong H, Wang Y, Liu J, Xing L, Xu M, Li W. A novel electrolyte with the ability to form a solid electrolyte interface on the anode and cathode of a LiMn2O4/graphite battery. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2013, 1(41): 12954–12961

    Article  CAS  Google Scholar 

  38. Wang D Y, Sinha N N, Burns J C, Aiken C P, Petibon R, Dahn J R. A comparative study of vinylene carbonate and fluoroethylene carbonate additives for LiCoO2/graphite pouch cells. Journal of the Electrochemical Society, 2014, 161(4): A467–A472

    Article  CAS  Google Scholar 

  39. Zhong Q, Bonakdarpour A, Zhang M, Gao Y, Dahn J R. Synthesis and electrochemistry of LiNixMn2-xO4. Journal of the Electrochemical Society, 1997, 144(1): 205–213

    Article  CAS  Google Scholar 

  40. Amine K. Olivine LiCoPO4 as 4.8 V electrode material for lithium batteries. Electrochemical and Solid-State Letters, 2000, 3(4): 178–179

    Article  CAS  Google Scholar 

  41. Kunduraci M, Amatucci G G. Synthesis and characterization of nanostructured 4.7 V LixMn1.5Ni0.5O4 spinels for high-power lithium-ion batteries. Journal of the Electrochemical Society, 2006, 153(7): A1345–A1352

    Article  CAS  Google Scholar 

  42. Wolfenstine J, Allen J. Ni3+/Ni2+ redox potential in LiNiPO4. Journal of Power Sources, 2005, 142(1–2): 389–390

    Article  CAS  Google Scholar 

  43. Yang L, Ravdel B, Lucht B L. Electrolyte reactions with the surface of high voltage LiNi0.5Mn1.5O4 cathodes for lithium-ion batteries. Electrochemical and Solid-State Letters, 2010, 13(8): A95–A97

    Article  CAS  Google Scholar 

  44. Hu L, Zhang Z, Amine K. Fluorinated electrolytes for Li-ion battery: An FEC-based electrolyte for high voltage LiNi0.5Mn1.5O4/graphite couple. Electrochemistry Communications, 2013, 35: 76–79

    Article  CAS  Google Scholar 

  45. Aurbach D, Markovsky B, Salitra G, Markevich E, Talyossef Y, Koltypin M, Nazar L, Ellis B, Kovacheva D. Review on electrodeelectrolyte solution interactions, related to cathode materials for Liion batteries. Journal of Power Sources, 2007, 165(2): 491–499

    Article  CAS  Google Scholar 

  46. Xia J, Petibon R, Xiong D, Ma L, Dahn J R. Enabling linear alkyl carbonate electrolytes for high voltage Li-ion cells. Journal of Power Sources, 2016, 328: 124–135

    Article  CAS  Google Scholar 

  47. Borodin O, Behl W, Jow T R. Oxidative stability and initial decomposition reactions of carbonate, sulfone, and alkyl phosphate-based electrolytes. Journal of Physical Chemistry C, 2013, 117(17): 8661–8682

    Article  CAS  Google Scholar 

  48. Xu M, Zhou L, Dong Y, Chen Y, Garsuch A, Lucht B L. Improving the performance of graphite/LiNi0.5Mn1.5O4 cells at high voltage and elevated temperature with added lithium bis (oxalato) borate (LiBOB). Journal of the Electrochemical Society, 2013, 160(11): A2005–A2013

    Article  CAS  Google Scholar 

  49. Xia J, Ma L, Nelson K J, Nie M, Lu Z, Dahn J R. A study of Li-ion cells operated to 4.5 V and at 55 °C. Journal of the Electrochemical Society, 2016, 163(10): A2399–A2406

    Article  CAS  Google Scholar 

  50. Cao X, He X, Wang J, Liu H, Röser S, Rad B R, Evertz M, Streipert B, Li J, Wagner R, Winter M, Cekic-Laskovic I. High voltage LiNi0.5Mn1.5O4/Li4Ti5O12 lithium ion cells at elevated temperatures: Carbonate-versus ionic liquid-based electrolytes. ACS Applied Materials & Interfaces, 2016, 8(39): 25971–25978

    Article  CAS  Google Scholar 

  51. Abu-Lebdeh Y, Davidson I. High-voltage electrolytes based on adiponitrile for Li-ion batteries. Journal of the Electrochemical Society, 2009, 156(1): A60–A65

    Article  CAS  Google Scholar 

  52. Xue L, Ueno K, Lee S Y, Angell C A. Enhanced performance of sulfone-based electrolytes at lithium ion battery electrodes, including the LiNi0.5Mn1.5O4 high voltage cathode. Journal of Power Sources, 2014, 262: 123–128

    Article  CAS  Google Scholar 

  53. Abouimrane A, Belharouak I, Amine K. Sulfone-based electrolytes for high-voltage Li-ion batteries. Electrochemistry Communications, 2009, 11(5): 1073–1076

    Article  CAS  Google Scholar 

  54. Zhang Z, Hu L, Wu H, Weng W, Koh M, Redfern P C, Curtiss L A, Amine K. Fluorinated electrolytes for 5 V lithium-ion battery chemistry. Energy & Environmental Science, 2013, 6(6): 1806–1810

    Article  CAS  Google Scholar 

  55. Zhang X, Pugh J K, Ross P N. Computation of thermodynamic oxidation potentials of organic solvents using density functional theory. Journal of the Electrochemical Society, 2001, 148(5): E183–E188

    Article  CAS  Google Scholar 

  56. Assary R S, Curtiss L A, Redfern P C, Zhang Z, Amine K. Computational studies of polysiloxanes: Oxidation potentials and decomposition reactions. Journal of Physical Chemistry C, 2011, 115(24): 12216–12223

    Article  CAS  Google Scholar 

  57. Xu K, Ding S P, Jow T R. Toward reliable values of electrochemical stability limits for electrolytes. Journal of the Electrochemical Society, 1999, 146(11): 4172–4178

    Article  CAS  Google Scholar 

  58. Zhang S S, Jow T R. Aluminum corrosion in electrolyte of Li-ion battery. Journal of Power Sources, 2002, 109(2): 458–464

    Article  CAS  Google Scholar 

  59. Zhang X, Devine T M. Identity of passive film formed on aluminum in Li-ion battery electrolytes with LiPF6. Journal of the Electrochemical Society, 2006, 153(9): B344–B351

    Article  CAS  Google Scholar 

  60. Xu K, Zhang S, Jow T R. Formation of the graphite/electrolyte interface by lithium bis(oxalato)borate. Electrochemical and Solid-State Letters, 2003, 6(6): A117–A120

    Article  CAS  Google Scholar 

  61. Zhuang G V, Xu K, Jow T R, Ross P N Jr. Study of SEI layer formed on graphite anodes in PC/LiBOB electrolyte using IR spectroscopy. Electrochemical and Solid-State Letters, 2004, 7(8): A224–A227

    Article  CAS  Google Scholar 

  62. Ma L, Glazier S L, Petibon R, Xia J, Peters J M, Liu Q, Allen J, Doig R N C, Dahn J R. A guide to ethylene carbonate-free electrolyte making for Li-ion cells. Journal of the Electrochemical Society, 2017, 164(1): A5008–A5018

    Article  CAS  Google Scholar 

  63. Xia J, Nie M, Burns J C, Xiao A, Lamanna W M, Dahn J R. Fluorinated electrolyte for 4.5 V Li(Ni0.4Mn0.4Co0.2)O2/graphite Li-ion cells. Journal of Power Sources, 2016, 307: 340–350

    Article  CAS  Google Scholar 

  64. Xia J, Glazier S L, Petibon R, Dahn J R. Improving linear alkyl carbonate electrolytes with electrolyte additives. Journal of the Electrochemical Society, 2017, 164(6): A1239–A1250

    Article  CAS  Google Scholar 

  65. Xia J, Liu Q, Hebert A, Hynes T, Petibon R, Dahn J R. Succinic anhydride as an enabler in ethylene carbonate-free linear alkyl carbonate electrolytes for high voltage Li-ion cells. Journal of the Electrochemical Society, 2017, 164(6): A1268–A1273

    Article  CAS  Google Scholar 

  66. Lewandowski A, Kurc B, Stepniak I, Swiderska-Mocek A. Properties of Li-graphite and LiFePO4 electrodes in LiPF6-sulfolane electrolyte. Electrochimica Acta, 2011, 56(17): 5972–5978

    Article  CAS  Google Scholar 

  67. Lewandowski A, Kurc B, Swiderska-Mocek A, Kusa N. Graphite/LiFePO4 lithium-ion battery working at the heat engine coolant temperature. Journal of Power Sources, 2014, 266: 132–137

    Article  CAS  Google Scholar 

  68. Xia J, Self J, Ma L, Dahn J R. Sulfolane-based electrolyte for high voltage Li(Ni0.42Mn0.42Co0.16)O2 (NMC442)/graphite pouch cells. Journal of the Electrochemical Society, 2015, 162(8): A1424–A1431

    Article  CAS  Google Scholar 

  69. Hilbig P, Ibing L, Wagner R, Winter M, Cekic-Laskovic I. Ethyl methyl sulfone-based electrolytes for lithium ion battery applications. Energies, 2017, 10(9): 1312

    Article  CAS  Google Scholar 

  70. Hu L, Xue Z, Amine K, Zhang Z. Fluorinated electrolytes for 5 V Li-ion chemistry: synthesis and evaluation of an additive for highvoltage LiNi0.5Mn1.5O4/graphite cell. Journal of the Electrochemical Society, 2014, 161(12): A1777–A1781

    Article  CAS  Google Scholar 

  71. Im J, Lee J, Ryou MH, Lee Y M, Cho K Y. Fluorinated carbonatebased electrolyte for high-voltage Li(Ni0.5Mn0.3Co0.2)O2/graphite lithium-ion battery. Journal of the Electrochemical Society, 2017, 164(1): A6381–A6385

    Article  CAS  Google Scholar 

  72. Kita F, Sakata H, Sinomoto S, Kawakami A, Kamizori H, Sonoda T, Nagashima H, Nie J, Pavlenko N V, Yagupolskii Y L. Characteristics of the electrolyte with fluoro organic lithium salts. Journal of Power Sources, 2000, 90(1): 27–32

    Article  CAS  Google Scholar 

  73. Kalhoff J, Bresser D, Bolloli M, Alloin F, Sanchez J Y, Passerini S. Enabling LiTFSI-based electrolytes for safer lithium-ion batteries by using linear fluorinated carbonates as (Co)solvent. Chem-SusChem, 2014, 7(10): 2939–2946

    CAS  Google Scholar 

  74. Xiong D J, Bauer M, Ellis L D, Hynes T, Hyatt S, Hall D S, Dahn J R. Some physical properties of ethylene carbonate-free electrolytes. Journal of the Electrochemical Society, 2018, 165(2): A126–A131

    Article  CAS  Google Scholar 

  75. Sun X, Angell C A. Doped sulfone electrolytes for high voltage Liion cell applications. Electrochemistry Communications, 2009, 11 (7): 1418–1421

    Article  CAS  Google Scholar 

  76. Xu K, Angell C A. Sulfone-based electrolytes for lithium-ion batteries. Journal of the Electrochemical Society, 2002, 149(7): A920–A926

    Article  CAS  Google Scholar 

  77. Lee S Y, Ueno K, Angell C A. Lithium salt solutions in mixed sulfone and sulfone-carbonate solvents: A walden plot analysis of the maximally conductive compositions. Journal of Physical Chemistry C, 2012, 116(45): 23915–23920

    Article  CAS  Google Scholar 

  78. Xu K, Angell C A. High anodic stability of a new electrolyte solvent: Unsymmetric noncyclic aliphatic sulfone. Journal of the Electrochemical Society, 1998, 145(4): L70–L72

    Article  CAS  Google Scholar 

  79. Wang Y, Xing L, Li W, Bedrov D. Why do sulfone-based electrolytes show stability at high voltages? insight from density functional theory. Journal of Physical Chemistry Letters, 2013, 4 (22): 3992–3999

    Article  CAS  Google Scholar 

  80. Brenner A. Note on an organic-electrolyte cell with a high voltage. Journal of the Electrochemical Society, 1971, 118(3): 461–462

    Article  CAS  Google Scholar 

  81. Zhang T, de Meatza I, Qi X, Paillard E. Enabling steady graphite anode cycling with high voltage, additive-free, sulfolane-based electrolyte: Role of the binder. Journal of Power Sources, 2017, 356: 97–102

    Article  CAS  Google Scholar 

  82. Hochgatterer N S, SchweigerMR, Koller S, Raimann P R, Wöhrle T, Wurm C, Winter M. Silicon/graphite composite electrodes for high-capacity anodes: Influence of binder chemistry on cycling stability. Electrochemical and Solid-State Letters, 2008, 11(5): A76–A80

    Article  CAS  Google Scholar 

  83. Nguyen C C, Yoon T, Seo D M, Guduru P, Lucht B L. Systematic investigation of binders for silicon anodes: Interactions of binder with silicon particles and electrolytes and effects of binders on solid electrolyte interphase formation. ACS Applied Materials & Interfaces, 2016, 8(19): 12211–12220

    Article  CAS  Google Scholar 

  84. Kim N. Electrolyte for lithium ion battery to control swelling. US Patent, 20050233207A1, 2004–04–16

  85. Hamamoto T, Abe K, Tsutomu T. Non-aqueous electrolyte and lithium secondary battery using the same. US Patent, 20070207389A1, 2007–09–06

  86. Ma T, Xu G L, Li Y, Wang L, He X, Zheng J, Liu J, Engelhard M H, Zapol P, Curtiss L A, Jorne J, Amine K, Chen Z. Revisiting the corrosion of the aluminum current collector in lithium-ion batteries. Journal of Physical Chemistry Letters, 2017, 8(5): 1072–1077

    Article  CAS  PubMed  Google Scholar 

  87. Wu F, Xiang J, Li L, Chen J, Tan G, Chen R. Study of the electrochemical characteristics of sulfonyl isocyanate/sulfone binary electrolytes for use in lithium-ion batteries. Journal of Power Sources, 2012, 202: 322–331

    Article  CAS  Google Scholar 

  88. Fujii K, Seki S, Fukuda S, Kanzaki R, Takamuku T, Umebayashi Y, Ishiguro S. Anion conformation of low-viscosity roomtemperature ionic liquid 1-ethyl-3-methylimidazolium bis(fluorosulfonyl) imide. Journal of Physical Chemistry B, 2007, 111(44): 12829–12833

    Article  CAS  Google Scholar 

  89. Paillard E, Zhou Q, Henderson W A, Appetecchi G B, Montanino M, Passerini S. Electrochemical and physicochemical properties of PY14FSI-based electrolytes with LiFSI. Journal of the Electrochemical Society, 2009, 156(11): A891–A895

    Article  CAS  Google Scholar 

  90. Gebresilassie G, Grugeon S, Gachot G, Armand M, Laruelle S. LiFSI vs. LiPF6 electrolytes in contact with lithiated graphite: Comparing thermal stabilities and identification of specific SEIreinforcing additives. Electrochimica Acta, 2013, 102: 133–141

    Google Scholar 

  91. Petibon R, Aiken C P, Ma L, Xiong D, Dahn J R. The use of ethyl acetate as a sole solvent in highly concentrated electrolyte for Liion batteries. Electrochimica Acta, 2015, 2015(154): 287–293

    Article  CAS  Google Scholar 

  92. Zhang T, Kaymaksiz S, de Meatza I, Paillard E. Practical sulfolane-based electrolytes: Choice of Li salt for graphite anode operation. Honolulu: ECS Meeting Abstracts, 2016, MA2016–02537

    Google Scholar 

  93. Li L, Zhou S, Han H, Li H, Nie J, Armand M, Zhou Z, Huang X. Transport and electrochemical properties and spectral features of non-aqueous electrolytes containing LiFSI in linear carbonate solvents. Journal of the Electrochemical Society, 2011, 158(2): A74–A82

    Article  CAS  Google Scholar 

  94. Abouimrane A, Ding J, Davidson I J. Liquid electrolyte based on lithium bis-fluorosulfonyl imide salt: Aluminum corrosion studies and lithium ion battery investigations. Journal of Power Sources, 2009, 189(1): 693–696

    Article  CAS  Google Scholar 

  95. Myung S T, Hitoshi Y, Sun Y K. Electrochemical behavior and passivation of current collectors in lithium-ion batteries. Journal of Materials Chemistry, 2011, 21(27): 9891–9911

    Article  CAS  Google Scholar 

  96. Dalavi S, Xu M, Knight B, Lucht B L. Effect of added LiBOB on high voltage (LiNi0.5Mn1.5O4) spinel cathodes. Electrochemical and Solid-State Letters, 2012, 15(2): A28–A31

    Article  CAS  Google Scholar 

  97. Zhang S S. An unique lithium salt for the improved electrolyte of Li-ion battery. Electrochemistry Communications, 2006, 8(9): 1423–1428

    Article  CAS  Google Scholar 

  98. Nie M, Lucht B L. Role of lithium salt on solid electrolyte interface (SEI) formation and dtructure in lithium ion batteries. Journal of the Electrochemical Society, 2014, 161(6): A1001–A1006

    Article  CAS  Google Scholar 

  99. Knight B M. PC based electrolytes with LiDFOB as an alternative salt for lithium-ion batteries. Dissertation for the Doctoral Degree. Kinston, RI: Univeristy of Rhode Island, 2014

    Google Scholar 

  100. Chen Z, Qin Y, Liu J, Amine K. Lithium difluoro(oxalato)borate as additive to improve the thermal stability of lithiated graphite. Electrochemical and Solid-State Letters, 2009, 12(4): A69–A72

    Article  CAS  Google Scholar 

  101. Lazar M L, Lucht B L. Carbonate free electrolyte for lithium ion batteries containing butyrolactone and methyl butyrate. Journal of the Electrochemical Society, 2015, 162(6): A928–A934

    Article  CAS  Google Scholar 

  102. Ehteshami N, Paillard E. Ethylene carbonate-free, adiponitrilebased electrolytes compatible with graphite anodes. ECS Transactions, 2015, 77(1): 11–20

    Article  CAS  Google Scholar 

  103. Seki S, Takei K, Miyashiro H, Watanabe M. Physicochemical and electrochemical properties of glyme-LiN(SO2F)2 complex for safe lithium-ion secondary battery electrolyte. Journal of the Electrochemical Society, 2011, 158(6): A769–A774

    Article  CAS  Google Scholar 

  104. Moon H, Tatara R, Mandai T, Ueno K, Yoshida K, Tachikawa N, Yasuda T, Dokko K, Watanabe M. Mechanism of Li ion desolvation at the interface of graphite electrode and glyme-Li salt solvate ionic liquids. Journal of Physical Chemistry C, 2014, 118(35): 20246–20256

    Article  CAS  Google Scholar 

  105. Yamada Y, Furukawa K, Sodeyama K, Kikuchi K, Yaegashi M, Tateyama Y, Yamada A. Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. Journal of the American Chemical Society, 2014, 136(13): 5039–5046

    Article  CAS  PubMed  Google Scholar 

  106. Yamada Y, Usui K, Chiang C H, Kikuchi K, Furukawa K, Yamada A. General observation of lithium intercalation into graphite in ethylene-carbonate-free superconcentrated electrolytes. ACS Applied Materials & Interfaces, 2014, 6(14): 10892–10899

    Article  CAS  Google Scholar 

  107. Yamada Y, Yaegashi M, Abe T, Yamada A. A superconcentrated ether electrolyte for fast-charging Li-ion batteries. Electrochemistry Communications, 2013, 49(95): 11194–11196

    CAS  Google Scholar 

  108. Wang J, Yamada Y, Sodeyama K, Chiang C H, Tateyama Y, Yamada A. Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nature Communications, 2016, 7: 12032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yamada Y, Yamada A. Review—superconcentrated electrolytes for lithium batteries. Journal of the Electrochemical Society, 2015, 162(14): A2406–A2423

    Article  CAS  Google Scholar 

  110. Yamada Y. Developing new functionalities of superconcentrated electrolytes for lithium-ion batteries. Electrochemistry, 2017, 85 (9): 559–565

    Article  CAS  Google Scholar 

  111. Zheng J, Lochala J A, Kwok A, Deng Z D, Xiao J. Research progress towards understanding the unique interfaces between concentrated electrolytes and electrodes for energy storage applications. Advancement of Science, 2017, 4(8): 1700032

    Google Scholar 

  112. Lu D, Tao J, Yan P, Henderson W A, Li Q, Shao Y, Helm M L, Borodin O, Graff G L, Polzin B, Wang C M, Engelhard M, Zhang J G, De Yoreo J J, Liu J, Xiao J. Formation of reversible solid electrolyte interface on graphite surface from concentrated electrolytes. Nano Letters, 2017, 17(3): 1602–1609

    Article  CAS  PubMed  Google Scholar 

  113. Von Wald Cresce A, Borodin O, Xu K. Correlating Li+ solvation sheath structure with interphasial chemistry on graphite. Journal of Physical Chemistry C, 2012, 116(50): 26111–26117

    Article  CAS  Google Scholar 

  114. Yamada Y, Takazawa Y, Miyazaki K, Abe T. Electrochemical lithium intercalation into graphite in dimethyl sulfoxide-based electrolytes: Effect of solvation structure of lithium ion. Journal of Physical Chemistry C, 2010, 114(26): 11680–11685

    Article  CAS  Google Scholar 

  115. McOwen D W, Seo D M, Borodin O, Vatamanu J, Boyle P D, Henderson W A. Concentrated electrolytes: Decrypting electrolyte properties and reassessing Al corrosion mechanisms. Energy & Environmental Science, 2014, 7(1): 416–426

    Article  CAS  Google Scholar 

  116. Moon H, Mandai T, Tatara R, Ueno K, Yamazaki A, Yoshida K, Seki S, Dokko K, Watanabe M. Solvent activity in electrolyte solutions controls electrochemical reactions in Li-Ion and Li-sulfur batteries. Journal of Physical Chemistry C, 2015, 119(8): 3957–3970

    Article  CAS  Google Scholar 

  117. Aurbach D, Markovsky B, Weissman I, Levi E, Ein-Eli Y. On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries. Electrochimica Acta, 1999, 45(1–2): 67–86

    Article  CAS  Google Scholar 

  118. Nie M, Abraham D P, Seo D M, Chen Y, Bose A, Lucht B L. Role of solution structure in solid electrolyte interphase formation on graphite with LiPF6 in propylene carbonate. Journal of Physical Chemistry C, 2013, 117(48): 25381–25389

    Article  CAS  Google Scholar 

  119. Pan Y, Wang G, Lucht B L. Cycling performance and surface analysis of lithium bis(trifluoromethanesulfonyl)imide in propylene carbonate with graphite. Electrochimica Acta, 2016, 217: 269–273

    Article  CAS  Google Scholar 

  120. Watanabe M, ThomasML, Zhang S, Ueno K, Yasuda T, Dokko K. Application of ionic liquids to energy storage and conversion materials and devices. Chemical Reviews, 2017, 117(10): 7190–7239

    Article  CAS  PubMed  Google Scholar 

  121. Lewandowski A, Swiderska-Mocek A. Ionic liquids as electrolytes for Li-ion batteries-an overview of electrochemical studies. Journal of Power Sources, 2009, 194(2): 601–609

    Article  CAS  Google Scholar 

  122. Zhao Y, Bostrom T. Application of ionic liquids in solar cells and batteries: A review. Current Organic Chemistry, 2015, 19(6): 556–566

    Article  CAS  Google Scholar 

  123. Howlett P C, MacFarlane D R, Hollenkamp A F. High lithium metal cycling efficiency in a room-temperature ionic liquid. Electrochemical and Solid-State Letters, 2004, 7(5): A97–A101

    Article  CAS  Google Scholar 

  124. Grande L, von Zamory J, Koch S L, Kalhoff J, Paillard E, Passerini S. Homogeneous lithium electrodeposition with pyrrolidiniumbased ionic liquid electrolytes. ACS Applied Materials & Interfaces, 2015, 7(10): 5950–5958

    Article  CAS  Google Scholar 

  125. Holzapfel M, Jost C, Novák P. Stable cycling of graphite in an ionic liquid based electrolyte. Chemical Communications, 2004, (18): 2098–2099

    Article  Google Scholar 

  126. Ishikawa M, Sugimoto T, Kikuta M, Ishiko E, Kono M. Pure ionic liquid electrolytes compatible with a graphitized carbon negative electrode in rechargeable lithium-ion batteries. Journal of Power Sources, 2006, 162(1): 658–662

    Article  CAS  Google Scholar 

  127. Yamagata M, Tanaka K, Tsuruda Y, Fukuda S, Nakasuka S, Kono M, Ishikawa M. The first lithium-ion battery with ionic liquid electrolyte demonstrated in extreme environment of space. Electrochemistry, 2015, 83(10): 918–924

    Article  CAS  Google Scholar 

  128. Reiter J, Paillard E, Grande L, Winter M, Passerini S. Physicochemical properties of N-methoxyethyl-N-methylpyrrolidinum ionic liquids with perfluorinated anions. Electrochimica Acta, 2013, 91: 101–107

    Article  CAS  Google Scholar 

  129. Matsui Y, Yamagata M, Murakami S, Saito Y, Higashizaki T, Ishiko E, Kono M, Ishikawa M. Design of an electrolyte composition for stable and rapid charging-discharging of a graphite negative electrode in a bis(fluorosulfonyl)imide-based ionic liquid. Journal of Power Sources, 2015, 279: 766–773

    Article  CAS  Google Scholar 

  130. Moreno M, Simonetti E, Appetecchi G B, Carewska M, Montanino M, Kim G T, Loeffler N, Passerini S. Ionic liquid electrolytes for safer lithium batteries. Journal of the Electrochemical Society, 2017, 164(1): A6026–A6031

    Article  CAS  Google Scholar 

  131. Lestriez B, Bahri S, Sandu I, Roué L, Guyomard D. On the binding mechanism of CMC in Si negative electrodes for Li-ion batteries. Electrochemistry Communications, 2007, 9(12): 2801–2806

    Article  CAS  Google Scholar 

  132. Mueller F, Bresser D, Paillard E, Winter M, Passerini S. Influence of the carbonaceous conductive network on the electrochemical performance of ZnFe2O4 nanoparticles. Journal of Power Sources, 2013, 236: 87–94

    Article  CAS  Google Scholar 

  133. Bresser D, Mueller F, Buchholz D, Paillard E, Passerini S. Embedding tin nanoparticles in micron-sized disordered carbon for lithium-and sodium-ion anodes. Electrochimica Acta, 2014, 128 (10): 163–171

    Article  CAS  Google Scholar 

  134. Sen U K, Mitra S. High-rate and high-energy-density lithium-ion battery anode containing 2D MoS2 nanowall and cellulose binder. ACS Applied Materials & Interfaces, 2013, 5(4): 1240–1247

    Article  CAS  Google Scholar 

  135. Bresser D, Paillard E, Kloepsch R, Krueger S, Fiedler M, Schmitz R, Baither D, Winter M, Passerini S. Carbon coated ZnFe2O4 nanoparticles for advanced lithium-ion anodes. Advanced Energy Materials, 2013, 3(4): 513–523

    Article  CAS  Google Scholar 

  136. Kovalenko I, Zdyrko B, Magasinski A, Hertzberg B, Milicev Z, Burtovyy R, Luzinov I, Yushin G. A major constituent of brown algae for use in high-capacity Li-ion batteries. Science, 2011, 334 (6052): 75–79

    Article  CAS  PubMed  Google Scholar 

  137. Komaba S, Yabuuchi N, Ozeki T, Han Z J, Shimomura K, Yui H, Katayama Y, Miura T. Comparative study of sodium polyacrylate and poly(vinylidene fluoride) as binders for high capacity Sigraphite composite negative electrodes in Li-ion batteries. Journal of Physical Chemistry C, 2012, 116(1): 1380–1389

    Article  CAS  Google Scholar 

  138. Inagaki M. Carbon coating for enhancing the functionalities of materials. Carbon, 2012, 50(9): 3247–3266

    Article  CAS  Google Scholar 

  139. Sharova V, Moretti A, Giffin G, Carvalho D, Passerini S. Evaluation of carbon-coated graphite as a negative electrode material for Li-ion batteries. C Journal of Carbon Research, 2017, 3(3): 22

    Article  CAS  Google Scholar 

  140. Menkin S, Golodnitsky D, Peled E. Artificial solid-electrolyte interphase (SEI) for improved cycleability and safety of lithiumion cells for EV applications. Electrochemistry Communications, 2009, 11(9): 1789–1791

    Article  CAS  Google Scholar 

  141. Li F S, Wu Y S, Chou J, Winter M, Wu N L. A mechanically robust and highly ion-conductive polymer-blend coating for high-power and long-life lithium-ion battery anodes. Advanced Materials, 2015, 27(1): 130–137

    Article  CAS  PubMed  Google Scholar 

  142. Nobili F, Mancini M, Stallworth P E, Croce F, Greenbaum S G, Marassi R. Tin-coated graphite electrodes as composite anodes for Li-ion batteries. Effects of tin coatings thickness toward intercalation behavior. Journal of Power Sources, 2012, 198(15): 243–250

    CAS  Google Scholar 

  143. Verma P, Novák P. Formation of artificial solid electrolyte interphase by grafting for improving Li-ion intercalation and preventing exfoliation of graphite. Carbon, 2012, 50(7): 2599–2614

    Article  CAS  Google Scholar 

  144. Ma L, Kim M S, Archer L A. Stable artificial solid electrolyte interphases for lithium batteries. Chemistry of Materials, 2017, 29 (10): 4181–4189

    Article  CAS  Google Scholar 

  145. Fan L, Zhuang H L, Gao L, Lu Y, Archer L A. Regulating Li deposition at artificial solid electrolyte interphases. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5(7): 3483–3492

    Article  CAS  Google Scholar 

  146. Li N W, Yin Y X, Yang C P, Guo Y G. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Advanced Materials, 2016, 28(9): 1853–1858

    Article  CAS  PubMed  Google Scholar 

  147. Kang I S, Lee Y S, Kim DW. Improved cycling stability of lithium electrodes in rechargeable lithium batteries. Journal of the Electrochemical Society, 2014, 161(1): A53–A57

    Article  CAS  Google Scholar 

  148. Yang C, Chen J, Qing T, Fan X, Sun W, von Cresce A, Ding M S, Borodin O, Vatamanu J, Schroeder M A, Eidson N, Wang C, Xu K. 4.0 V aqueous Li-ion batteries. Joule, 2017, 1(1): 122–132

    Article  CAS  Google Scholar 

  149. Guk H, Kim D, Choi S H, Chung D H, Han S S. Thermostable artificial solid-electrolyte interface layer covalently linked to graphite for lithium ion battery: Molecular dynamics simulations. Journal of the Electrochemical Society, 2016, 163(6): A917–A922

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research presented is part of the ‘SPICY’ project funded by the European Union’s Horizon 2020 research and innovation program under grant No. 653373.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elie Paillard.

Additional information

Elie Paillard, electrochemist, studied engineering (Materials/Chemical engineering/Electrochemistry) at National Polytechnic Institute Grenoble (INPG), France. After a PhD thesis defended in 2008 on ‘New polymer electrolytes for lithium batteries’ (LEPMI laboratory, INPG, France), he did a two years post-doc on ionic liquid-based electrolytes for batteries and supercapacitors at North Carolina State University (Raleigh, USA). He then joined successively University of Muenster, Muenster Electrochemical Energy Technologies (MEET) and Helmholtz Institute Ulm, in Germany as a project manager, working on various topics related to lithium metal and lithium-ion batteries (Li metal anode, nanocomposite and conversion/alloying anodes, lithium-air battery, ionic liquid and polymer electrolytes, electrode binders…). In 2015, he took the lead of a group dedicated to polymer and hybrid electrolytes at Helmholtz Institute Muenster (Germany). Besides his current focus on dry and plasticized solid polymer electrolytes, gels, and single-ion conductors for high voltage Li metal and lithium-ion batteries, he has been working on high voltage liquid electrolytes for graphite-based lithium-ion batteries, in particular within the EU project SPICY (2015–2018), where he investigated the practicability of sulfolane and adiponitrile, ethylene carbonate-free electrolytes. He is co-author of 55 peer-reviewed articles, 9 patents and 2 book chapters.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Paillard, E. Recent advances toward high voltage, EC-free electrolytes for graphite-based Li-ion battery. Front. Chem. Sci. Eng. 12, 577–591 (2018). https://doi.org/10.1007/s11705-018-1758-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-018-1758-z

Keywords

Navigation