Skip to main content
Log in

Nickel nanopore arrays as promising current collectors for constructing solid-state supercapacitors with ultrahigh rate performance

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

In this work, nickel nanopore arrays with a highly-oriented nanoporous structure inherited from porous alumina membranes were used as nanostructured current collectors for constructing ultrahigh rate solid-state supercapacitors. A thin layer of poly(3,4-ethylenedioxythiophene) (PEDOT) as electroactive materials was conformally coated onto nickel nanopores to form heterostructured electrodes. The as-prepared electrodes have a large specific surface area to ensure a high capacity, and the highly-oriented nanoporous structure of nickel nanopores reduces the ion transport resistance, allowing the ions in the solid-state electrolytes to quickly access the PEDOT surface during the fast charge-discharge process. As a result, the assembled solid-state supercapacitor in a symmetric configuration exhibits an ideal capacitive behavior and a superior rate capability even at an ultrahigh scan rate of 50 V∙s‒1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jiang J, Li Y, Liu J, Huang X, Yuan C, Lou XWD. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Advanced Materials, 2012, 24(38): 5166–5180

    Article  CAS  PubMed  Google Scholar 

  2. Zhao H, Liu L, Vellacheri R, Lei Y. Recent advances in designing and fabricating self-supported nanoelectrodes for supercapacitors. Advancement of Science, 2017, 4(10): 1700188

    Google Scholar 

  3. Zhi M, Xiang C, Li J, Li M, Wu N. Nanostructured carbon-metal oxide composite electrodes for supercapacitors: A review. Nanoscale, 2013, 5(1): 72–88

    Article  CAS  PubMed  Google Scholar 

  4. Simon P, Gogotsi Y, Dunn B. Where do batteries end and supercapacitors begin? Science, 2014, 343(6176): 1210–1211

    Article  CAS  PubMed  Google Scholar 

  5. Vellacheri R, Al-Haddad A, Zhao H, Wang W, Wang C, Lei Y. High performance supercapacitor for efficient energy storage under extreme environmental temperatures. Nano Energy, 2014, 8: 231–237

    Article  CAS  Google Scholar 

  6. Yan J, Wang Q, Wei T, Fan Z. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Advanced Energy Materials, 2014, 4(4): 1300816

    Article  CAS  Google Scholar 

  7. Grote F, Kühnel R S, Balducci A, Lei Y. Template assisted fabrication of free-standing MnO2 nanotube and nanowire arrays and their application in supercapacitors. Applied Physics Letters, 2014, 104(5): 053904

    Article  CAS  Google Scholar 

  8. Grote F, Zhao H, Lei Y. Self-supported carbon coated TiN nanotube arrays: Innovative carbon coating leads to an improved cycling ability for supercapacitor applications. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(7): 3465–3470

    Article  CAS  Google Scholar 

  9. Lu Q, Chen J G, Xiao J Q. Nanostructured electrodes for highperformance pseudocapacitors. Angewandte Chemie International Edition, 2013, 52(7): 1882–1889

    Article  CAS  PubMed  Google Scholar 

  10. Mirvakili S M, Hunter I W. Vertically aligned niobium nanowire arrays for fast-charging micro-supercapacitors. Advanced Materials, 2017, 29(27): 1700671

    Article  CAS  Google Scholar 

  11. Chen W, Cai W, Lei Y, Zhang L. A sonochemical approach to the confined synthesis of palladium nanoparticles in mesoporous silica. Materials Letters, 2001, 50(2): 53–56

    Article  CAS  Google Scholar 

  12. Wang S, Wang M, Lei Y, Zhang L. “Anchor effect” in poly(styrene maleic anhydride)/TiO2 nanocomposites. Journal of Materials Science Letters, 1999, 18(24): 2009–2012

    Article  Google Scholar 

  13. Yu Z, Tetard L, Zhai L, Thomas J. Supercapacitor electrode materials: Nanostructures from 0 to 3 dimensions. Energy & Environmental Science, 2015, 8(3): 702–730

    Article  CAS  Google Scholar 

  14. Wen L, Wang Z, Mi Y, Xu R, Yu S H, Lei Y. Designing heterogeneous 1D nanostructure arrays based on AAO templates for energy applications. Small, 2015, 11(28): 3408–3428

    Article  CAS  PubMed  Google Scholar 

  15. Vellacheri R, Zhao H, Mühlstädt M, Ming J, Al-Haddad A, Wu M, Jandt K D, Lei Y. All-solid-state cable-type supercapacitors with ultrahigh rate capability. Advanced Materials Technologies, 2016, 1 (1): 1600012

    Article  CAS  Google Scholar 

  16. Vellacheri R, Zhao H, Mühlstädt M, Al-Haddad A, Jandt K D, Lei Y. Rationally engineered electrodes for a high-performance solidstate cable-type supercapacitor. Advanced Functional Materials, 2017, 27(18): 1606696

    Article  CAS  Google Scholar 

  17. Yang P, Chao D, Zhu C, Xia X, Zhang Y, Wang X, Sun P, Tay B K, Shen Z X, Mai W. Ultrafast-charging supercapacitors based on cornlike titanium nitride nanostructures. Advancement of Science, 2016, 3(6): 1500299

    Google Scholar 

  18. Carlberg J, Inganäs O. Poly(3,4-ethylenedioxythiophene) as electrode material in electrochemical capacitors. Journal of the Electrochemical Society, 1997, 144(4): L61–L64

    Article  CAS  Google Scholar 

  19. Zhang H, Yu X, Braun P V. Three-dimensional bicontinuous ultrafast-charge and-discharge bulk battery electrodes. Nature Nanotechnology, 2011, 6(5): 277–281

    Article  CAS  PubMed  Google Scholar 

  20. Wen L, Mi Y, Wang C, Fang Y, Grote F, Zhao H, Zhou M, Lei Y. Cost-effective atomic layer deposition synthesis of Pt nanotube arrays: Application for high performance supercapacitor. Small, 2014, 10(15): 3162–3168

    Article  CAS  PubMed  Google Scholar 

  21. Zhao H, Wang C, Vellacheri R, Zhou M, Xu Y, Fu Q, Wu M, Grote F, Lei Y. Self-supported metallic nanopore arrays with highly oriented nanoporous structures as ideally nanostructured electrodes for supercapacitor applications. Advanced Materials, 2014, 26(45): 7654–7659

    Article  CAS  PubMed  Google Scholar 

  22. Liu L, Zhao H, Wang Y, Fang Y, Xie J, Lei Y. Evaluating the role of nanostructured current collectors in energy storage capability of supercapacitor electrodes with thick electroactive materials layer. Advanced Functional Materials, 2018, 28(6): 1705107

    Article  CAS  Google Scholar 

  23. Portet C, Taberna P, Simon P, Laberty-Robert C. Modification of Al current collector surface by sol-gel deposit for carbon–carbon supercapacitor applications. Electrochimica Acta, 2004, 49(6): 905–912

    Article  CAS  Google Scholar 

  24. Grote F, Lei Y. A complete three-dimensionally nanostructured asymmetric supercapacitor with high operating voltage window based on PPy and MnO2. Nano Energy, 2014, 10: 63–70

    Article  CAS  Google Scholar 

  25. Zhang J, Wang S, Zhang S, Tao Q, Pan L, Wang Z, Zhang Z, Lei Y, Yang S, Zhao H. In situ synthesis and phase change properties of Na2SO4$10H2O@SiO2 solid nanobowls toward smart heat storage. Journal of Physical Chemistry C, 2011, 115(41): 20061–20066

    Article  CAS  Google Scholar 

  26. Biswas S, Drzal L T. Multilayered nanoarchitecture of graphene nanosheets and polypyrrole nanowires for high performance supercapacitor electrodes. Chemistry of Materials, 2010, 22(20): 5667–5671

    Article  CAS  Google Scholar 

  27. Pang S C, Anderson MA, Chapman T W. Novel electrode materials for thin-film ultracapacitors: Comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide. Journal of the Electrochemical Society, 2000, 147(2): 444–450

    Article  CAS  Google Scholar 

  28. Kajdos A, Kvit A, Jones F, Jagiello J, Yushin G. Tailoring the pore alignment for rapid ion transport in microporous carbons. Journal of the American Chemical Society, 2010, 132(10): 3252–3253

    Article  CAS  PubMed  Google Scholar 

  29. Gowda S R, Leela Mohana Reddy A, Zhan X, Jafry H R, Ajayan P M. 3D nanoporous nanowire current collectors for thin film microbatteries. Nano Letters, 2012, 12(3): 1198–1202

    Article  CAS  PubMed  Google Scholar 

  30. Xu C, Li Z, Yang C, Zou P, Xie B, Lin Z, Zhang Z, Li B, Kang F, Wong C P. An ultralong, highly oriented nickel-nanowire-array electrode scaffold for high-performance compressible pseudocapacitors. Advanced Materials, 2016, 28(21): 4105–4110

    Article  CAS  PubMed  Google Scholar 

  31. Zhu H, Li M, Wang D, Zhou S, Peng C. Interfacial synthesis of freestanding asymmetrical PPY-PEDOT copolymer film with 3D network structure for supercapacitors. Journal of the Electrochemical Society, 2017, 164(9): A1820–A1825

    Article  CAS  Google Scholar 

  32. Zhao Q, Wang G, Yan K, Yan J, Wang J. Binder-free porous PEDOT electrodes for flexible supercapacitors. Journal of Applied Polymer Science, 2015, 132(41): 42549

    Google Scholar 

  33. Lei Y, Chim W, Sun H, Wilde G. Highly ordered CdS nanoparticle arrays on silicon substrates and photoluminescence properties. Applied Physics Letters, 2005, 86(10): 103106

    Article  CAS  Google Scholar 

  34. Lang X, Hirata A, Fujita T, Chen M. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nature Nanotechnology, 2011, 6(4): 232–236

    Article  CAS  PubMed  Google Scholar 

  35. Yang P, Xie J, Guo C, Li C M. Soft-to network hard-material for constructing both ion-and electron-conductive hierarchical porous structure to significantly boost energy density of a supercapacitor. Journal of Colloid and Interface Science, 2017, 485: 137–143

    Article  CAS  PubMed  Google Scholar 

  36. Kötz R, Carlen M. Principles and applications of electrochemical capacitors. Electrochimica Acta, 2000, 45(15): 2483–2498

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the European Research Council (Three Dsurface: 240144), European Research Council (HiNaPc: 737616), BMBF (ZIK-3DNanoDevice: 03Z1MN11), BMBF (Meta-ZIK-BioLithoMorphie: 03Z1M512), and German Research Foundation (DFG: LE 2249_4-1) for the financial support to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Lei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Liu, L., Fang, Y. et al. Nickel nanopore arrays as promising current collectors for constructing solid-state supercapacitors with ultrahigh rate performance. Front. Chem. Sci. Eng. 12, 339–345 (2018). https://doi.org/10.1007/s11705-018-1699-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-018-1699-6

Keywords

Navigation