Skip to main content
Log in

Re-evaluation of several heavy metals removal by natural limestones

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Different treatment technologies have been efficiently applied to remove heavy metals from wastewater. Efforts have been made to find out the most economic water treatment technology by using low cost and easily accessible natural materials. On the other hand, heavy metals are the most threatening groundwater contaminants because of their toxicity and harmful effects on human and biota. This review discusses the use of natural geological materials for heavy metal removal in aqueous systems. Special attention has been devoted to natural limestone through a systematic inventory of relevant published reports. The removal of toxic metals may include different mechanisms (e.g., physisorption, chemisorptions, precipitation, etc.), depending on the physico-chemical properties of the material and the removed metal. Sorption of toxic metals (e.g., Pb, Cu, Cd, Zn, Cr, Hg, etc.) onto natural limestone involved precipitation of metal carbonate as a predominant removal process, but often subordinated by adsorption and ion exchange, depending on the physico-chemical properties of the studied limestone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sari A, Tuzen M, Citak D, Soylak M. Equilibrium, kinetic and thermodynamic studies of adsorption of Pb(II) from aqueous solution onto Turkish kaolinite clay. Journal of Hazardous Materials, 2007, 149(2): 283–291

    CAS  Google Scholar 

  2. Eloussaief M, Benzina M. Efficiency of natural and acid-activated clays in the removal of Pb(II) from aqueous solutions. Journal of Hazardous Materials, 2010, 178(1–3): 753–757

    CAS  Google Scholar 

  3. Sdiri A, Higashi T, Hatta T, Jamoussi F, Tase N. Evaluating the adsorptive capacity of montmorillonitic and calcareous clays on the removal of several heavy metals in aqueous systems. Chemical Engineering Journal, 2011, 172(1): 37–46

    CAS  Google Scholar 

  4. Sdiri A, Higashi T, Hatta T, Jamoussi F, Tase N, Bouaziz S. Effects of impurities on the removal of heavy metals by natural limestones in aqueous systems. Journal of Environmental Management, 2012, 93(1): 171–179

    Google Scholar 

  5. Eloussaief M, Jarraya I, Benzina M. Adsorption of copper ions on two clays from Tunisia: pH and temperature effects. Applied Clay Science, 2009, 46(4): 409–413

    CAS  Google Scholar 

  6. Elkhatib E A, Elshebiny G M, Balba A M. Lead sorption in calcareous soils. Environmental Pollution, 1991, 69(4): 269–276

    CAS  Google Scholar 

  7. Shahriari F, Higashi T, Tamura K. Effects of clay addition on soil protease activities in Andosols in the presence of cadmium. Soil Science and Plant Nutrition, 2010, 56(4): 560–569

    CAS  Google Scholar 

  8. Klay S, Charef A, Ayed L, Houman B, Rezgui F. Effect of irrigation with treated wastewater on geochemical properties (saltiness, C, N and heavy metals) of isohumic soils (Zaouit Sousse perimeter, Oriental Tunisia). Desalination, 2010, 253(1–3): 180–187

    CAS  Google Scholar 

  9. Kurniawan T A, Chan G Y S, Lo W H, Babel S. Physico-chemical treatment techniques for wastewater laden with heavy metals. Chemical Engineering Journal, 2006, 118(1–2): 83–98

    CAS  Google Scholar 

  10. Iqbal M, Saeed A, Zafar S I. FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd2+ and Pb2+ removal by mango peel waste. Journal of Hazardous Materials, 2009, 164(1): 161–171

    CAS  Google Scholar 

  11. Fu F, Wang Q. Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 2011, 92(3): 407–418

    CAS  Google Scholar 

  12. Sadegh Safarzadeh M, Bafghi M S, Moradkhani D, Ojaghi Ilkhchi M. A review on hydrometallurgical extraction and recovery of cadmium from various resources. Minerals Engineering, 2007, 20(3): 211–220

    CAS  Google Scholar 

  13. Sulaymon A H, Sharif A O, Al-Shalchi T K. Removal of cadmium from simulated wastewaters by electrodeposition on stainless steeel tubes bundle electrode. Desalination and Water Treatment, 2011, 29(1–3): 218–226

    CAS  Google Scholar 

  14. Ahmad A, Ghufran R, Faizal W M. Cd(II), Pb(II) and Zn(II) removal from contaminated water by biosorption using activated sludge biomass. CLEAN-Soil, Air. Water, 2010, 38(2): 153–158

    CAS  Google Scholar 

  15. Das N. Remediation of radionuclide pollutants through biosorption? An overview. CLEAN-Soil, Air. Water, 2012, 40(1): 16–23

    CAS  Google Scholar 

  16. Ali I, Gupta V K. Advances in water treatment by adsorption technology. Nature Protocols, 2007, 1(6): 2661–2667

    Google Scholar 

  17. Bhattacharyya K G, Gupta S S. Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review. Advances in Colloid and Interface Science, 2008, 140(2): 114–131

    CAS  Google Scholar 

  18. Itskos G, Koukouzas N, Vasilatos C, Megremi I, Moutsatsou A. Ali SDIRI et al. Re-evaluation of several heavy metals removal by natural limestones 11 Comparative uptake study of toxic elements from aqueous media by the different particle-size-fractions of fly ash. Journal of Hazardous Materials, 2010, 183(1–3): 787–792

    CAS  Google Scholar 

  19. Jaman H, Chakraborty D, Saha P. A Study of the thermodynamics and kinetics of copper adsorption using chemically modified rice husk. CLEAN-Soil, Air. Water, 2009, 37(9): 704–711

    CAS  Google Scholar 

  20. Saxena S, D’Souza S F. Heavy metal pollution abatement using rock phosphate mineral. Environment International, 2006, 32(2): 199–202

    CAS  Google Scholar 

  21. Allen J P, Torres I G. Physical Separation Techniques for Contaminated Sediment. West Palm Beach: CRC Press, 1991, 23–47

    Google Scholar 

  22. National Research Council. Alternatives for Ground Water Cleanup. Washington DC: National Academy Press, 1994, 13–17

    Google Scholar 

  23. Ozdes D, Duran C, Senturk H B. Adsorptive removal of Cd(II) and Pb(II) ions from aqueous solutions by using Turkish illitic clay. Journal of Environmental Management, 2011, 92(12): 3082–3090

    CAS  Google Scholar 

  24. Rouff A A, Elzinga E J, Reeder R J, Fisher N S. The effect of aging and pH on Pb(II) sorption processes at the calcite-water interface. Environmental Science & Technology, 2006, 40(6): 1792–1798

    CAS  Google Scholar 

  25. Wankasi D, Horsfall J N R M Jr, Spiff A I. Retention of Pb (II) ion from aqueous solution by Nipah palm (Nypa Fruticans Wurmb) petiole biomass. Journal of the Chilean Chemical Society, 2005, 50(4): 691–696

    CAS  Google Scholar 

  26. Smith L A, Means J L, Chen A, Alleman B, Chapman C C, Tixier J S Jr, Brauning S E, Gavaskar A R, Royer M D. Remedial Options for Metals-Contaminated Sites. Boca Raton: Lewis Publishers, 1995, 11–221

    Google Scholar 

  27. Bodek I, Lyman W J, Reehl W F, Rosenblatt D H. Environmental Inorganic Chemistry: Properties, Processes and Estimation Methods. New York: Pergamon Press, 1988, 23–33

    Google Scholar 

  28. Godelitsas A, Astilleros JM, Hallam K, Harissopoulos S, Putnis A. Interaction of calcium carbonates with lead in aqueous solutions. Environmental Science & Technology, 2003, 37(15): 3351–3360

    CAS  Google Scholar 

  29. Aziz H A, Adlan M N, Ariffin K S. Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr(III)) removal from water in Malaysia: Post treatment by high quality limestone. Bioresource Technology, 2008, 99(6): 1578–1583

    CAS  Google Scholar 

  30. Sdiri A, Higashi T, Hatta T, Jamoussi F, Tase N. Removal of heavy metals from aqueous solution by limestone. International Journal of Global Environmental Issues, 2012, 12(2–4): 171–178

    Google Scholar 

  31. Bhattacharyya K G, Gupta S S. Pb(II) uptake by kaolinite and montmorillonite in aqueous medium: Influence of acid activation of the clay. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 277(1–3): 191–200

    CAS  Google Scholar 

  32. Komnitsas K, Bartzas G, Paspaliaris I. Efficiency of limestone and red mud barriers: Laboratory column studies. Minerals Engineering, 2004, 17(2): 183–194

    CAS  Google Scholar 

  33. Evans L J. Chemistry of metal retention by soils. Environmental Science & Technology, 1989, 23(9): 1046–1056

    CAS  Google Scholar 

  34. Chaari I, Fakhfakh E, Chakroun S, Bouzid J, Boujelben N, Feki M, Rocha F, Jamoussi F. Lead removal from aqueous solutions by a Tunisian smectitic clay. Journal of Hazardous Materials, 2008, 156(1–3): 545–551

    CAS  Google Scholar 

  35. Al-Degs Y S, El-Barghouthi M I, Issa A A, Khraisheh M A, Walker G M. Sorption of Zn(II), Pb(II), and Co(II) using natural sorbents: Equilibrium and kinetic studies. Water Research, 2006, 40(14): 2645–2658

    CAS  Google Scholar 

  36. World Health Organization. Mercury in drinking-water. WHO Guidelines for Drinking Water Quality, 2005, 1–7

    Google Scholar 

  37. Mulange DMW, Garbers-Craig AM. Stabilization of Cr(VI) from fine ferrochrome dust using exfoliated vermiculite. Journal of Hazardous Materials, 2012, 223: 46–52

    Google Scholar 

  38. Eloussaief M, Kallel N, Yaacoubi A, Benzina M. Mineralogical identification, spectroscopic characterization, and potential environmental use of natural clay materials on chromate removal from aqueous solutions. Chemical Engineering Journal, 2011, 168(3): 1024–1031

    CAS  Google Scholar 

  39. Chen Y G, He Y, Ye WM, Lin C H, Zhang X F, Ye B. Removal of chromium(III) from aqueous solutions by adsorption on bentonite from Gaomiaozi, China. Environmental Earth Sciences, 2012, 67(5): 1261–1268

    CAS  Google Scholar 

  40. Bajpai S, Dey A, Jha M K, Gupta S K, Gupta A. Removal of hazardous hexavalent chromium from aqueous solution using divinylbenzene copolymer resin. International Journal of Environmental Science and Technology, 2012, 9(4): 683–690

    CAS  Google Scholar 

  41. Augustin P V, Viero A P. Environmental impact and geochemical behavior of soil contaminants from an industrial waste landfill in southern Brazil. Environmental Earth Sciences, 2012, 67(5): 1521–1530

    CAS  Google Scholar 

  42. Yadav S, Srivastava V, Banerjee S, Weng C H, Sharma Y C. Adsorption characteristics of modified sand for the removal of hexavalent chromium ions from aqueous solutions: Kinetic, thermodynamic and equilibrium studies. Catena, 2013, 100: 120–127

    CAS  Google Scholar 

  43. Adegoke H I, Adekola F A. Equilibrium sorption of hexavalent chromium from aqueous solution using synthetic hematite. Colloid Journal, 2012, 74(4): 420–426

    CAS  Google Scholar 

  44. Li W, Tang Y K, Zeng Y T, Tong Z F, Liang D W, Cui W W. Adsorption behavior of Cr(VI) ions on tannin-immobilized activated clay. Chemical Engineering Journal, 2012, 193: 88–95

    Google Scholar 

  45. Wu X, Wang H P, Deng N S, Wu F. Feasibility study on heavy metal removal from mine water by using geological material. Fresenius Environmental Bulletin, 2003, 12(11): 1400–1406

    CAS  Google Scholar 

  46. Chrotowski P, Durda J L, Edelman K G. The use of natural processes for the control of chromium migration. Remediation, 1991, 2(3): 341–351

    Google Scholar 

  47. Badreddine R, Humez A N, Mingelgrin U, Benchara A, Meducin F, Prost R. Retention of trace metals by solidified/stabilized wastes: Assessment of long-term metal release. Environmental Science & Technology, 2004, 38(5): 1383–1398

    CAS  Google Scholar 

  48. Evanko C R, Dzombak D A. Remediation of metals-contaminated soils and groundwater. Pittsburgh: Carnegie Mellon University, 1997, 21–40

    Google Scholar 

  49. Gu Y, Zhang T, Liu Y, Mu W, Zhang W, Dou Z, Jiang X. Pressure acid leaching of zinc sulfide concentrate. Transaction of Nonferrous Metal Society of China, 2010, 20: 136–140

    Google Scholar 

  50. Miller A, Figueroa L, Wildeman T. Zinc and nickel removal in simulated limestone treatment of mining influenced water. Applied Geochemistry, 2011, 26(1): 125–132

    CAS  Google Scholar 

  51. Sdiri A, Higashi T, Chaabouni R, Jamoussi F. Competitive removal of heavy metals from aqueous solutions by montmorillonitic and calcareous clays. Water, Air, and Soil Pollution, 2012, 223(3): 1191–1204

    CAS  Google Scholar 

  52. Jemmali N, Souissi F, Villa I M, Vennemann T W. Ore genesis of Pb-Zn deposits in the Nappe zone of Northern Tunisia: Constraints from Pb-S-C-O isotopic systems. Ore Geology Reviews, 2011, 40(1): 41–53

    Google Scholar 

  53. Souissi R, Souissi F, Chakroun H K, Bouchardon J L. Mineralogical and geochemical characterization of mine tailings and Pb, Zn, and Cd mobility in a carbonate setting (Northern Tunisia). Mine Water and the Environment, 2013, 32(1): 16–27

    CAS  Google Scholar 

  54. Sen Gupta S, Bhattacharyya K G. Adsorption of heavy metals on kaolinite and montmorillonite: A review. Physical Chemistry Chemical Physics, 2012, 14(19): 6698–6723

    CAS  Google Scholar 

  55. Barhoumi S, Messaoudi I, Deli T, Said K, Kerkeni A. Cadmium bioaccumulation in three benthic fish species, Salaria basilisca. Zosterisessor ophiocephalus and Solea vulgaris collected from the Gulf of Gabes in Tunisia. Journal of Environmental Sciences (China), 2009, 21(7): 980–984

    CAS  Google Scholar 

  56. Messaoudi I, Barhoumi S, Saïd K, Kerkeni A. Study on the sensitivity to cadmium of marine fish Salaria basilisca (Pisces: Blennidae). Journal of Environmental Sciences (China), 2009, 21(11): 1620–1624

    CAS  Google Scholar 

  57. Ulmanu M, Marañón E, Fernández Y, Castrillón L, Anger I, Dumitriu D. Removal of copper and cadmium ions from diluted aqueous solutions by low cost and waste material adsorbents. Water, Air, and Soil Pollution, 2003, 142(1/4): 357–373

    CAS  Google Scholar 

  58. El-Safty S A, Shenashen M A, Khairy M. Optical detection/collection of toxic Cd(II) ions using cubic Ia3d aluminosilica mesocage sensors. Talanta, 2012, 98: 69–78

    CAS  Google Scholar 

  59. Srivastava V C, Mall I D, Mishra I M. Equilibrium modelling of single and binary adsorption of cadmium and nickel onto bagasse fly ash. Chemical Engineering Journal, 2006, 117(1): 79–91

    CAS  Google Scholar 

  60. Baccar R, Blánquez P, Bouzid J, Feki M, Sarrà M. Equilibrium, thermodynamic and kinetic studies on adsorption of commercial dye by activated carbon derived from olive-waste cakes. Chemical Engineering Journal, 2010, 165(2): 457–464

    CAS  Google Scholar 

  61. Arias M, Perez-Novo C, Lopez E, Soto B. Competitive adsorption and desorption of copper and zinc in acid soils. Geoderma, 2006, 133(3–4): 151–159

    CAS  Google Scholar 

  62. Ashworth D J, Alloway B J. Soil mobility of sewage sludge-derived dissolved organic matter, copper, nickel and zinc. Environmental Pollution, 2004, 127(1): 137–144

    CAS  Google Scholar 

  63. Dzombak D A, Morel F M M. Surface Complexation Modeling: Hydrous Ferric Oxide. New York: Wiley Interscience, 1990, 20–325

    Google Scholar 

  64. LaGrega M D, Buckingham P L, Evans J C. Hazardous Waste Management. New York: McGraw-Hill, 1994, 63–82

    Google Scholar 

  65. Cravotta C A III, Trahan MK. Limestone drains to increase pH and remove dissolved metals from acidic mine drainage. Applied Geochemistry, 1999, 14(5): 581–606

    CAS  Google Scholar 

  66. Geberetsadike T T, Malmström M. Modelling reactive transport of acid mine drainage in groundwater: Effect of geochemical processes, spatially variable flow, source location and distribution. Stockholm: The Royal Institute of Technology, 2004, 14–22

    Google Scholar 

  67. Mylona E, Xenidis A, Paspaliaris I. Inhibition of acid generation from sulphidic wastes by the addition of small amounts of limestone. Minerals Engineering, 2000, 13(10–11): 1161–1175

    CAS  Google Scholar 

  68. Younger P, Banwart S, Hedin A, Robert S. Mine Water: Hydrology, Pollution, Remediation. The Netherlands: Kluwer Academic Press, 2002, 13–423

    Google Scholar 

  69. Akcil A, Koldas S. Acid mine drainage (AMD): Causes, treatment and case studies. Journal of Cleaner Production, 2006, 14(12–13): 1139–1145

    Google Scholar 

  70. Sdiri A, Higashi T, Hatta T, Jamoussi F, Tase N. Mineralogical and spectroscopic characterization, and potential environmental use of limestone from the Abiod formation, Tunisia. Environmental Earth Sciences, 2010, 61(6): 1275–1287

    CAS  Google Scholar 

  71. Aloui T, Chaabani F. Influence of fractures and karstification on the development of a quarry at Jebel Feriana, Tunisia. Bulletin of Engineering Geology and the Environment, 2007, 66(3): 345–351

    CAS  Google Scholar 

  72. Bouaziz S, Sghari A, Benzina M, Sdiri A, Chaabouni R. Les matières premières naturelles du gouvernorat de Gabes: caractérisation et utilisations. Tunisia: ODS, 2007, 173–237

    Google Scholar 

  73. Pera J, Husson S, Guilhot B. Influence of finely ground limestone on cement hydration. Cement and Concrete Composites, 1999, 21(2): 99–105

    CAS  Google Scholar 

  74. Schoon J, van der Heyden L, Eloy P, Gaigneux EM, de Buysser K, van driessche I, de Belie N. Waste fibrecement: An interesting alternative raw material for a sustainable portland clinker production. Construction & Building Materials, 2012, 36: 391–403

    Google Scholar 

  75. Johnson D B, Hallberg K B. Acid mine drainage remediation options: A review. Science of the Total Environment, 2005, 338(1): 3–14

    CAS  Google Scholar 

  76. Valderama C, Barios J I, Ferran A, Cortina J L. Evaluating binary sorption of phenol/aniline from aqueous solutions onto granular activated carbon and hypercrosslinked polymeric resin (MN200). Water, Air, and Soil Pollution, 2010, 210(1–4): 421–434

    Google Scholar 

  77. Cravotta C A III, Watzlaf G R, David L N, Stan JM, Christopher C F, James S J, Davis A, Naftz David L, James A D. “Chapter 2-Design and Performance of Limestone Drains to Increase pH and Remove Metals from Acidic Mine Drainage” in Handbook of Groundwater Remediation using Permeable Reactive Barriers. San Diego: Academic Press, 2003, 19–66

    Google Scholar 

  78. Faulkner B B, Skousen J G. Effects of land reclamation and passive treatment systems on improving water quality. Green Lands, 1995, 25(4): 34–40

    Google Scholar 

  79. Hyman D M, Watzlaf G R. Mine drainage characterization for the successful design and evaluation of passive treatment systems. In: Proceedings of Seventeenth Annual Conference of the National Association of Abandoned Mine Lands. 1995, 170–185

    Google Scholar 

  80. Caraballo M A, Rotting T S, Macias F, Nieto J M, Ayora C. Field multi-step limestone and MgO passive system to treat acid mine drainage with high metal concentrations. Applied Geochemistry, 2009, 24(12): 2301–2311

    CAS  Google Scholar 

  81. Silva A M, Cruz F L S, Lima R M F, Teixeira M C, Leão V A. Manganese and limestone interactions during mine water treatment. Journal of Hazardous Materials, 2010, 181(1–3): 514–520

    CAS  Google Scholar 

  82. Lee G, Bigham J M, Faure G. Removal of trace metals by coprecipitation with Fe, Al and Mn from natural waters contaminated with acid mine drainage in the Ducktown Mining District, Tennessee. Applied Geochemistry, 2002, 17(5): 569–581

    CAS  Google Scholar 

  83. Sdiri A, Higashi T. Simultaneous removal of heavy metals from aqueous solution by natural limestones. Applied Water Sciences, 2013, 3(1): 29–39

    CAS  Google Scholar 

  84. Huminicki D M C, Rimstidt J D. Neutralization of sulfuric acid solutions by calcite dissolution and the application to anoxic limestone drain design. Applied Geochemistry, 2008, 23(2): 148–165

    CAS  Google Scholar 

  85. Skousen J, Sexstone A, Ziemkiewicz P. Acid Mine Drainage Control and Treatment. In: Reclamation of Drastically Disturbed Lands. Wisconsin: Madison, 2000, 131–168

    Google Scholar 

  86. Skousen J. Overview of Passive Systems for Treating Acid Mine Drainage. Virginia: West Virginia University, 1998, 1–18

    Google Scholar 

  87. Ziemkiewicz P F, Skousen J G, Brant D L, Sterner P L, Lovett R J. Acid mine drainage treatment with armored limestone in open limestone channels. Journal of Environmental Quality, 1997, 26(4): 560–569

    Google Scholar 

  88. Green R, Waite T D, Melville M, Macdonald B T. Effectiveness of an open limestone channel in treating acid sulfate soil drainage. Water, Air, and Soil Pollution, 2008, 191(1–4): 293–304

    CAS  Google Scholar 

  89. Bamforth SM, Manning D A C, Singleton I, Younger P L, Johnson K L. Manganese removal from mine waters—investigating the occurrence and importance of manganese carbonates. Applied Geochemistry, 2006, 21(8): 1274–1287

    CAS  Google Scholar 

  90. Aziz H A, Othman N, Yusuff M S, Basri D R H, Ashaari F A H, Adlan M N, Othman F, Johari M, Perwira M. Removal of copper from water using limestone filtration technique determination of mechanism of removal. Environment International, 2001, 26(5–6): 395–399

    CAS  Google Scholar 

  91. Hussain S, Aziz H A, Isa MH, Adlan M N, Asaari F A H. Physicochemical method for ammonia removal from synthetic wastewater using limestone and GAC in batch and column studies. Bioresource Technology, 2006, 98(4): 874–880

    Google Scholar 

  92. Cubillas P, Kehler S, Prieto M, Causserand C, Oelkers E H. How do mineral coatings affect dissolution rates? An experimental study of coupled CaCO3 dissolution-CdCO3 precipitation. Geochimica et Cosmochimica Acta, 2005, 69(23): 5459–5476

    CAS  Google Scholar 

  93. Sanchez A G, Ayuso E A. Sorption of Zn, Cd and Cr on calcite. Application to purification of industrial wastewaters. Minerals Engineering, 2002, 15(7): 539–547

    Google Scholar 

  94. Cave K, Talens-Alesson F I. Comparative effect of Mn(II) and Fe (III) as activators and inhibitors of the adsorption of other heavy metals on calcite. Colloids Surfaces A Physicochemical Engineering Aspect, 2005, 268(1–3): 19–23

    CAS  Google Scholar 

  95. Karageorgiou K, Paschalis M, Anastassakis G N. Removal of phosphate species from solution by adsorption onto calcite used as natural adsorbent. Journal of Hazardous Materials, 2007, 139(3): 447–452

    CAS  Google Scholar 

  96. Davis A D, Dixon D J, Sorensen L J. Development of an Agglomeration Process to Increase the Efficiency of Limestone-Based Material to Remove Metals from Drinking Water. South Dakota: Water research institute, 2006, 4–31

    Google Scholar 

  97. Kozar S, Bilinski H, Branica M. Adsorption of lead and cadmium ions on calcite in the Krka estuary. Marine Chemistry, 1992, 40(3): 215–230

    CAS  Google Scholar 

  98. Pickering W F. Extraction of copper, lead, zinc or cadmium ions sorbed on calcium carbonate. Water, Air, and Soil Pollution, 1983, 20(3): 299–309

    CAS  Google Scholar 

  99. Martins R J E, Pardo R, Boaventura R A R. Cadmium(II) and zinc (II) adsorption by the aquatic moss fontinalis antipyretica: Effect of temperature, pH and water hardness. Water Research, 2004, 38(3): 693–699

    CAS  Google Scholar 

  100. Martin-Garin A, Gaudet J P, Charlet L, Vitart X. A dynamic study of the sorption and the transport processes of cadmium in calcareous sandy soils. Waste Management (New York, N.Y.), 2002, 22(2): 201–207

    CAS  Google Scholar 

  101. Alkattan M, Oelkers E H, Dandurand J L, Schott J. An experimental study of calcite dissolution rates at acidic conditions and 25 °C in the presence of NaPO3 and MgCl2. Chemical Geology, 2002, 190(1–4): 291–302

    CAS  Google Scholar 

  102. Zhou Y F, Haynes R. A comparison of inorganic solid wastes as adsorbents of heavy metal cations in aqueous solution and their capacity for desorption and regeneration. Water, Air, and Soil Pollution, 2011, 218(1–4): 457–470

    CAS  Google Scholar 

  103. Gupta S S, Bhattacharyya K G. Removal of Cd(II) from aqueous solution by kaolinite, montmorillonite and their poly(oxo zirconium) and tetrabutylammonium derivatives. Journal of Hazardous Materials, 2006, 128(2–3): 247–257

    Google Scholar 

  104. Gupta V K, Carrott P J M, Ribeiro Carrott MM, Suhas L. Low-cost adsorbents: Growing approach to wastewater treatment-a review. Critical Reviews in Environmental Science and Technology, 2009, 39(10): 783–842

    Google Scholar 

  105. Smičiklas I, Dimović S, Plećaš I, Mitrić M. Removal of Co2+ from aqueous solutions by hydroxyapatite. Water Research, 2006, 40(12): 2267–2274

    Google Scholar 

  106. Unuabonah E I, Adebowale K O, Olu-Owolabi B I. Kinetic and thermodynamic studies of the adsorption of lead (II) ions onto phosphate-modified kaolinite clay. Journal of Hazardous Materials, 2007, 144(1–2): 386–395

    CAS  Google Scholar 

  107. Chen N, Zhang Z, Feng C, Sugiura N, Li M, Chen R. Fluoride removal from water by granular ceramic adsorption. Journal of Colloid and Interface Science, 2010, 348(2): 579–584

    CAS  Google Scholar 

  108. Wu P X, Li S Z, Ju L T, Zhu N W, Wu J H, Li P, Dang Z. Mechanism of the reduction of hexavalent chromium by organomontmorillonite supported iron nanoparticles. Journal of Hazardous Materials, 2012, 219: 283–288

    Google Scholar 

  109. Chiarle S. Mercury removal from water by ion exchange resins adsorption. Water Research, 2000, 34(11): 2971–2978

    CAS  Google Scholar 

  110. Prieto M, Cubillas P, Fernández-Gonzalez Á. Uptake of dissolved Cd by biogenic and abiogenic aragonite: A comparison with sorption onto calcite. Geochimica et Cosmochimica Acta, 2003, 67(20): 3859–3869

    CAS  Google Scholar 

  111. Gazea B, Adam K, Kontopoulos A. A review of passive systems for the treatment of acid mine drainage. Minerals Engineering, 1996, 9(1): 23–42

    CAS  Google Scholar 

  112. Hashim M A, Mukhopadhyay S, Narayan J, Sengupta B. Remediation technologies for heavy metal contaminated groundwater. Journal of Environmental Management, 2011, 92(10): 2355–2388

    CAS  Google Scholar 

  113. Wang X S, Li Z Z. Competitive adsorption of nickel and copper ions from aqueous solution using nonliving biomass of the marine brown Alga laminaria japonica. CLEAN-Soil, Air. Water, 2009, 37(8): 663–668

    CAS  Google Scholar 

  114. World Health Organization. Chromium in Drinking-water. In: Guidelines for Drinking-Water Quality. Health Criteria and Other Supporting Information. Geneva, 2003, 4–6

    Google Scholar 

  115. Hengen T J, Squillace M K, O’Sullivan A D, Stone J J. Life cycle assessment analysis of active and passive acid mine drainage treatment technologies. Resource Conservation and Recycle, 2014, 86: 160–167

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Sdiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sdiri, A., Bouaziz, S. Re-evaluation of several heavy metals removal by natural limestones. Front. Chem. Sci. Eng. 8, 418–432 (2014). https://doi.org/10.1007/s11705-014-1455-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-014-1455-5

Keywords

Navigation