Skip to main content
Log in

WO3 nanomaterials synthesized via a sol-gel method and calcination for use as a CO gas sensor

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Carbon monoxide is a poisonous and hazardous gas and sensitive sensor devices are needed to prevent humans from being poisoned by this gas. A CO gas sensor has been prepared from WO3 synthesized by a sol-gel method. The sensor chip was prepared by a spin-coating technique which deposited a thin film of WO3 on an alumina substrate. The chip samples were then calcined at 300, 400, 500 or 600 °C for 1 h. The sensitivities of the different sensor chips for CO gas were determined by comparing the changes in electrical resistance in the absence and presence of 50 ppm of CO gas at 200 °C. The WO3 calcined at 500 °C had the highest sensitivity. The sensitivity of this sensor was also measured at CO concentrations of 100 ppm and 200 ppm and at operating temperatures of 30 and 100 °C. Thermogravimetric analysis of the WO3 calcined at 500 °C indicated that this sample had the highest gas adsorption capacity. This preliminary research has shown that WO3 can serve as a CO gas sensor and that is should be further explored and developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang S H, Chou T C, Liu C C. Nano-crystalline tungsten oxide NO2 sensor. Sensors and Actuators. B, Chemical, 2003, 94(3): 343–351

    Article  CAS  Google Scholar 

  2. Liu Z, Miyauchi M, Yamazaki T, Zhen Y. Facile synthesis and NO2 gas sensing of tungsten oxide nanorods assembled microspheres. Sensors and Actuators. B, Chemical, 2009, 140(2): 514–519

    Article  CAS  Google Scholar 

  3. Boulova M, Gaskov A, Lucazeau G. Tungsten oxide reactivity versus CH4, CO and NO2 molecules studied by Raman spectroscopy. Sensors and Actuators. B, Chemical, 2001, 81(1): 99–106

    Article  CAS  Google Scholar 

  4. Yan A, Xie C, Zeng D, Cai S, Hu M. Synthesis, formation mechanism and sensing properties of WO3 hydrate nanowire nettedspheres. Materials Research Bulletin, 2010, 45(10): 1541–1547

    Article  CAS  Google Scholar 

  5. Kanan S M, Tripp C P. Synthesis, FTIR studies and sensor properties of WO3 powders. Current Opinion in Solid State and Materials Science, 2007, 11(1–2): 19–27

    Article  CAS  Google Scholar 

  6. Su X, Li Y, Jian J, Wang J. In situ etching WO3 nanoplates: Hydrothermal synthesis, photoluminescence and gas sensor properties. Materials Research Bulletin, 2010, 45(12): 1960–1963

    Article  CAS  Google Scholar 

  7. Deepa M, Singh P, Sharma S N, Agnihotry S A. Effect of humidity on structure and electrochromic properties of sol-gel-derived tungsten oxide films. Solar Energy Materials and Solar Cells, 2006, 90(16): 2665–2682

    Article  CAS  Google Scholar 

  8. Ozkan E, Lee S H, Liu P, Tracy C E, Tepehan F Z, Pitts J R, Deb S K. Electrochromic and optical properties of mesoporous tungsten oxide films. Solid State Ionics, 2002, 149(1–2): 139–146

    Article  CAS  Google Scholar 

  9. Pyper O, Schollhorn R, Donkers J J T M, Krings L H M. Nanocrystalline structure of WO3 thin Films prepared by the sol-gel technique. Materials Research Bulletin, 1998, 33(7): 1095–1101

    Article  CAS  Google Scholar 

  10. Su L, Lu Z. All solid-state smart window of electrodeposited WO3 and TiO2 particulate film with PTREFG gel electrolyte. Journal of Physics and Chemistry of Solids, 1998, 59(8): 1175–1180

    Article  CAS  Google Scholar 

  11. Chang K H, Hu C C, Huang C M, Liu Y L, Chang C I. Microwaveassisted hydrothermal synthesis of crystalline WO3-WO3·0.5H2O mixtures for pseudocapacitors of the asymmetric type. Journal of Power Sources, 2011, 196(4): 2387–2392

    Article  CAS  Google Scholar 

  12. Gillet M, Masek K, Gillet E. Structure of tungsten oxide nanoclusters. Surface Science, 2004, 566–568: 383–389

    Article  Google Scholar 

  13. Hidayat D, Purwanto A, Wang W N, Okuyama K. Preparation of size-controlled tungsten oxide nanoparticles and evaluation of their adsorption performance. Materials Research Bulletin, 2010, 45(2): 165–173

    Article  CAS  Google Scholar 

  14. Ha J H, Muralidharan P, Kim D K. Hydrothermal synthesis and characterization of self-assembled h-WO3 nanowires/nanorods using EDTA salts. Journal of Alloys and Compounds, 2009, 475(1–2): 446–451

    Article  CAS  Google Scholar 

  15. Ramana C V, Utsunomiya S, Ewing R C, Julien C M, Becker U. Structural stability and phase transitions in WO3 thin films. Journal of Physical Chemistry B, 2006, 110(21): 10430–10435

    Article  CAS  Google Scholar 

  16. Houx N L, Pourroy G, Camerel F, Comet M, Spitzer D. WO3 nanoparticles in the 5–30 nm range by solvothermal synthesis under microwave or resistive heating. Journal of Physical Chemistry B, 2010, 114: 155–161

    Google Scholar 

  17. Yous B, Robin S, Donnadieu A. Chemical vapor deposition of tungsten oxides: A comparative study by XPS, XRD and RHEED. Materials Research Bulletin, 1984, 19: 1349–1354

    Article  CAS  Google Scholar 

  18. Pyun S I, Kim D J, Bae J S. Hydrogen transport through r.f. magnetron sputtered amorphous and crystalline WO3 films. Journal of Alloys and Compounds, 1996, 244(1–2): 16–22

    Article  CAS  Google Scholar 

  19. Deki S, Beleke A B, Kotani Y, Mizuhata M. Synthesis of tungsten oxide thin film by liquid phase deposition. Materials Chemistry and Physics, 2010, 123(2–3): 614–619

    Article  CAS  Google Scholar 

  20. Abdullah S F, Radiman S, Hamid M A A, Ibrahim N B. Effect of calcinations temperature on the surface morphology and crystallinity of tungsten (VI) oxide nanorods prepared using colloidal gas aphrons method. Colloids and Surfaces A, 2006, 280: 88–94

    Article  CAS  Google Scholar 

  21. Brinker C J, Scherer G W. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. San Diego, USA: Academic Press. Inc., 1990, 2–6

    Google Scholar 

  22. Ho G W. Gas sensor with nanostructured oxide semiconductor materials. Science of Advanced Materials, 2011, 3(2): 150–168

    Article  CAS  Google Scholar 

  23. Susanti D, Nugroho S H, Nisfu H, Nugroho E P, Purwaningsih H, Kusuma G E, Shih S J. Comparative analysis of WO3 nanomaterial synthesized using a sol-gel method followed by calcination and hydrothermal treatments. Frontiers of Chemical Science and Engineering, 2012, 6(4): 371–380

    Article  CAS  Google Scholar 

  24. Cullity B D, Stock S R. Elements of X-Ray Diffraction. 3rd ed. New Jersey, USA: Prentice Hall, 2001, 170–172

    Google Scholar 

  25. Szilágyi I M, Madarász J, Pokol G, Király P, Tárkányi G, Saukko S, Mizsei J, Tòth A L, Szabò A, Varga-Josepovits K. Stability and controlled composition of hexagonal WO3. Chemistry of Materials, 2008, 20(12): 4116–4125

    Article  Google Scholar 

  26. Daniel M F, Desbat B, Lassegues J C, Gerard B, Figlarz M. Infrared and Raman study of WO3 tungsten trioxide and WO3·xH2O tungsten trioxide hydrate. Journal of Solid State Chemistry, 1987, 67(2): 235–247

    Article  CAS  Google Scholar 

  27. Tamaki J, Zhang Z, Fujimori K, Akiyama M, Harada T, Miura N, Yamazoe N. Grain-size effects in tungsten oxide-based sensor for nitrogen oxides. Journal of the Electrochemical Society, 1994, 141(8): 2207–2210

    Article  CAS  Google Scholar 

  28. Kocemba I, Rynkowski J. The influence of catalytic activity on the response of Pt/SnO2 gas sensors to carbon monoxide and hydrogen. Sensors and Actuators. B, Chemical, 2011, 155(2): 659–666

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diah Susanti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Susanti, D., Diputra, A.A.G.P., Tananta, L. et al. WO3 nanomaterials synthesized via a sol-gel method and calcination for use as a CO gas sensor. Front. Chem. Sci. Eng. 8, 179–187 (2014). https://doi.org/10.1007/s11705-014-1431-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-014-1431-0

Keywords

Navigation