Skip to main content

Tungsten Oxide Nanocomposites as High-Performance Gas Sensors: Factors Influencing the Sensor Performance

  • Chapter
  • First Online:
Functional Nanomaterials

Abstract

Nowadays, numerous types of gas sensors are available in the market. Amongst them semiconducting gas sensors are more favourable due to its cost-effectiveness, high electron mobility, electrical conductivity, thermal, chemical, and mechanical stability. Moreover they possess better sensitivity towards various oxidizing and reducing gases. This chapter describes synthesis, physico-chemical properties, gas sensing performance and the factors influencing the sensing performance of nanostructured tungsten oxide nanocomposites. Influence of (i) noble metal loading (Ruthenium), (ii) structure-assisting agent (glycine), and (iii) graphene oxide loading (RGO) is discussed intensively. The range of reduced and oxidizing gases such as acetone, ethanol, propanol, ammonia, NOX, and H2S is scanned for better selectivity. Depending upon the type of additives used to fabricate the WO3 nanocomposites, the aforementioned gases showed variant selectivity. For example, glycine-modified WO3 showed decent selectivity towards acetone, whereas Ru and RGO loading enhanced the H2S sensing performance. The sensor developed with Ru-loaded WO3 nanocomposite showed a selective response of 83.87% for barely 1 ppm H2S. Further, the single and unique strategy of developing microporous WO3 with different morphologies spanning over nano-to-micro, using glycine as a structure-assisting agent, showed 83.87% sensing towards acetone at 10 ppm concentration. The morphological correlation with the sensitivity is described. Sensor derived from RGO-loaded WO3 nanocomposite showed a selective response of 64.2% for barely 1 ppm H2S. All the developed sensor materials are compared to their gas sensing performance and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seiyama T, Kato A (1962) A new detector for gaseous components using semiconductor thin film. Anal Chem 34:1502–1503

    Article  CAS  Google Scholar 

  2. Taguchi N (1971) Gas detecting devices. U.S. Patent 3,631,436, 28 Dec 1971

    Google Scholar 

  3. Aswal DK, Gupta SK (2007) Science and technology of chemiresistor gas sensors. Nova Science Publishers

    Google Scholar 

  4. Victor DG, Zhou (2014) Climate change 2014, Ch. 1: Introductory chapter. Fifth assessment report of the intergovernmental panel on climate change. https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_full.pdf

  5. IPCC AR4 SYR Appendix Glossary (PDF). Retrieved 14 Dec 2008

    Google Scholar 

  6. NASA GISS: science briefs: greenhouse gases: refining the role of carbon dioxide. www.giss.nasa.gov. Retrieved 26 Apr 2016

  7. Karl TR, Trenberth KE (2003) Modern global climate change. Science 302(5651):1719–1723

    Article  CAS  Google Scholar 

  8. Chansin G, Pugh D (2017) Environmental gas sensors 2017–2027: technologies, manufacturers, forecasts. Scientific report. www.idtechex.com/research/reports/environmental-gas-sensors-2017-2027-000500.asp

  9. Zhang J, Sokolovskij R, Chen G, Zhu Y, Qi Y, Li XLW, Zhang GQ, Jiang Y-L (2019) Impact of high temperature H2 pre-treatment on Pt-AlGaN/GaN HEMT sensor for H2S detection. Sens Actuators B: Chem 280:138

    Google Scholar 

  10. Zhao Y, Song J-G, Ryu GH, Ko KY, Woo WJ, Kim Y, Kim D, Lim JH, Lee S, Lee Z, Park J, Kim H (2018) Low-temperature synthesis of 2D MoS2 on a plastic substrate for a flexible gas sensor. Nanoscale 10:9338–9345

    Google Scholar 

  11. Mehta SS, Nadargi DY, Tamboli MS, Chaudhary LS, Patil PS, Mulla IS, Suryavanshi SS (2018) Ru-loaded mesoporous WO3 microflowers for dual applications: enhanced H2S sensing and sunlight driven photocatalysis. Dalton Trans 47:16840

    Google Scholar 

  12. Mehta S, Nadargi D, Tamboli M, Patil V, Mulla I, Suryavanshi S (2019) Macroporous WO3: tunable morphology as a function of glycine concentration and its excellent acetone sensing performance. Ceram Int 45(1):409

    Google Scholar 

  13. Rajkumar C, Thirumalraj B, Chen SM, Veerakumar P, Liu SB, Appl ACS (2017) Mater Interfaces 37:31794

    Article  Google Scholar 

  14. Mendieta-Reyes NE, Díaz-García AK, Gómez R (1990) ACS Catal. 2018:8

    Google Scholar 

  15. Wang Z, Fan X, Li C, Men G, Han D, Gu F, Appl ACS (2018) Mater Interfaces 10:3776

    Article  CAS  Google Scholar 

  16. Cook B, Liu Q, Butler J, Smith K, Shi K, Ewing D, Casper M, Stramel A, Elliot A, Wu JZ, Appl ACS (2018) Mater Interfaces 10:873

    Article  CAS  Google Scholar 

  17. Mehta SS, Tamboli MS, Mulla IS, Suryavanshi SS (2018) J Solid State Chem 258:256

    Article  CAS  Google Scholar 

  18. Li S, Lin P, Zhao L, Wang C, Liu D, Liu F, Sun P, Liang X, Liu F, Yan X, Gao Y, Lu G (2018) Sens Actuators B 259:505

    Google Scholar 

  19. Berenguer AG, Celorrio V, Iniesta J, Fermin DJ, Ania CO (2016) Carbon 108:471

    Article  Google Scholar 

  20. Mehta SS, Nadargi DY, Tamboli MS, Chaudhary LS, Patil PS, Mulla IS, Suryavanshi SS (2018) Dalton Trans 47:16840

    Article  CAS  Google Scholar 

  21. Fujioka Y, Frantti J, Nieminen RM, Asiri AM (2013) J Phys Chem C 117:7506

    Article  CAS  Google Scholar 

  22. Kim SJ, Choi SJ, Jang JS, Kim NH, Hakim M, Tuller HL, Kim ID (2016) ACS Nano 10:5891

    Article  CAS  Google Scholar 

  23. Patil J, Nadargi D, Mulla IS, Suryavanshi SS (2018) Mater Lett 213:27

    Article  CAS  Google Scholar 

  24. Chen D, Zhang H, Liu Y, Li J (2013) Energy Environ Sci 6:1362

    Article  CAS  Google Scholar 

  25. Wang Q, Wen Z, Jeong Y, Choi J, Lee K, Li J (2006) Nanotechnology 17:3116

    Article  CAS  Google Scholar 

  26. Wen Z, Wu W, Liu Z, Zhang H, Li J, Chen J (2013) Phys Chem Chem Phys 15:6773

    Article  CAS  Google Scholar 

  27. Mehta SS, Nadargi DY, Tamboli MS, Mulla IS, Suryavanshi SS (2019) Ceramic Int 45(1):409

    Article  CAS  Google Scholar 

  28. Lin S, Guo Y, Li X, Liu Y (2015) Mater Lett 152:102–104

    Article  CAS  Google Scholar 

  29. Yin M, Yu L, Liu S (2017) J Alloy Compd 696:490–497

    Article  CAS  Google Scholar 

  30. Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  31. Lu Y, Zhang J, Wang F, Chen X, Feng Z, Li C (2018) ACS Appl Energy Mater 15:2067–2077

    Google Scholar 

  32. Haiyun Xu, Gao Jie, Li Minhan, Zhao Yuye, Zhang Ming, Zhao Tao, Wang Lianjun, Jiang Wan, Zhu Guanjia, Qian Xiaoyong, Fan Yuchi, Yang Jianping, Luo Wei (2019) Front Chem 7:266

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharad S. Suryavanshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nadargi, D.Y., Mulla, I.S., Suryavanshi, S.S. (2020). Tungsten Oxide Nanocomposites as High-Performance Gas Sensors: Factors Influencing the Sensor Performance. In: Thomas, S., Joshi, N., Tomer, V. (eds) Functional Nanomaterials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-15-4810-9_1

Download citation

Publish with us

Policies and ethics