Skip to main content
Log in

Ni/MgO catalyst prepared via dielectric-barrier discharge plasma with improved catalytic performance for carbon dioxide reforming of methane

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

A Ni/MgO catalyst was prepared via novel dielectric-barrier discharge (DBD) plasma decomposition method. The combined characterization of Brunauer-Emmett-Teller measurement, X-ray diffraction, hydrogen temperature-programmed reduction and transmission electron microscopy shows that DBD plasma treatment enhances the support-metal interaction of Ni/MgO catalyst and facilitates the formation of smaller Ni particles. Sphere-like Ni particles form on plasma treated Ni/MgO catalysts. The plasma treated Ni/MgO catalyst shows a significantly improved low temperature activity and good stability for CO2 reforming of methane to syngas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li F X, Fan L S. Clean coal conversion processes-progress and challenges. Energy & Environmental Science, 2008, 1(2): 248–267

    Article  CAS  Google Scholar 

  2. Wei Z, Sun J, Li Y, Datye A K, Wang Y. Bimetallic catalysts for hydrogen generation. Chemical Society Reviews, 2012, 41(24): 7994–8008

    Article  CAS  Google Scholar 

  3. Song C S. Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catalysis Today, 2006, 115(1–4): 2–32

    Article  CAS  Google Scholar 

  4. Chilingar G V, Sorokhtin O G, Khilyuk L, Gorfunkel M V. Greenhouse gases and greenhouse effect. Environmental Geology, 2009, 58(6): 1207–1213

    Article  CAS  Google Scholar 

  5. Wang Y H, Liu H M, Xu B Q. Durable Ni/MgO catalysts for CO2 reforming of methane: Activity and metal-support interaction. Journal of Molecular Catalysis A Chemical, 2009, 299(1–2): 44–52

    Article  CAS  Google Scholar 

  6. Foo S Y, Cheng C K, Nguyen T H, Adesina A A. Kinetic study of methane CO2 reforming on Co-Ni/Al2O3 and Ce-Co-Ni/Al2O3 catalysts. Catalysis Today, 2011, 164(1): 221–226

    Article  CAS  Google Scholar 

  7. Rostrupnielsen J R, Hansen J H B. CO2-reforming of methane over transition metals. Journal of Catalysis, 1993, 144(1): 38–49

    Article  CAS  Google Scholar 

  8. Wei J M, Iglesia E. Mechanism and site requirements for activation and chemical conversion of methane on supported Pt clusters and turnover rate comparisons among noble metals. Journal of Physical Chemistry B, 2004, 108(13): 4094–4103

    Article  CAS  Google Scholar 

  9. Liu C J, Ye J, Jiang J, Pan Y. Progresses in the preparation of coke resistant Ni-based catalyst for steam and CO2 reforming of methane. Chemcatchem, 2011, 3(3): 529–541

    Article  CAS  Google Scholar 

  10. Li Y, Liu C J. Effects of DBD plasma on morphological control of Cu(NO3)2·3H2O crystallization from aqueous solution. CIESC Journal, 2010, 61(10): 2754–2757

    CAS  Google Scholar 

  11. Li Y, Kuai P, Huo P, Liu C J. Fabrication of CuO nanofibers via the plasma decomposition of Cu(OH)2. Materials Letters, 2009, 63(2): 188–190

    Article  CAS  Google Scholar 

  12. Xie Y, Wei Z, Liu C J, Cui L, Wang C. Morphologic evolution of Au nanocrystals grown in ionic liquid by plasma reduction. Journal of Colloid and Interface Science, 2012, 374(1): 40–44

    Article  CAS  Google Scholar 

  13. Wei Z, Liu C J. Synthesis of monodisperse gold nanoparticles in ionic liquid by applying room temperature plasma. Materials Letters, 2011, 65(2): 353–355

    Article  CAS  Google Scholar 

  14. Hua W, Jin L, He X, Liu J, Hu H. Preparation of Ni/MgO catalyst for CO2 reforming of methane by dielectric-barrier discharge plasma. Catalysis Communications, 2010, 11(11): 968–972

    Article  CAS  Google Scholar 

  15. Qin P, Xu H Y, Long H L, Ran Y, Shang S Y, Yin Y X, Dai X Y. Ni/MgO catalyst prepared using atmospheric high-frequency discharge plasma for CO2 reforming of methane. Journal of Natural Gas Chemistry, 2011, 20(5): 487–492

    Article  CAS  Google Scholar 

  16. Yan X L, Liu C J. Effect of the catalyst structure on the formation of carbon nanotubes over Ni/MgO catalyst. Diamond and Related Materials, 2013, 31: 50–57

    Article  CAS  Google Scholar 

  17. Pan Y X, Liu C J, Shi P. Preparation and characterization of coke resistant Ni/SiO2 catalyst for carbon dioxide reforming of methane. Journal of Power Sources, 2008, 176(1): 46–53

    Article  CAS  Google Scholar 

  18. Cheng D G, Zhu X, Ben Y, He F, Cui L, Liu C J. Carbon dioxide reforming of methane over Ni/Al2O3 treated with glow discharge plasma. Catalysis Today, 2006, 115(1–4): 205–210

    Article  CAS  Google Scholar 

  19. Yan X, Liu Y, Zhao B, Wang Y, Liu C J. Enhanced sulfur resistance of Ni/SiO2 catalyst for methanation via the plasma decomposition of nickel precursor. Physical Chemistry Chemical Physics, 2013, 15(29): 12132–12138

    Article  CAS  Google Scholar 

  20. Nurunnabi M, Li B, Kunimori K, Suzuki K, Fujimoto K i, Tomishige K. Performance of NiO-MgO solid solution-supported Pt catalysts in oxidative steam reforming of methane. Applied Catalysis A, General, 2005, 292: 272–280

    Article  CAS  Google Scholar 

  21. Hu Y H. Solid-solution catalysts for CO2 reforming of methane. Catalysis Today, 2009, 148(3–4): 206–211

    Article  CAS  Google Scholar 

  22. Hu Y H, Ruckenstein E. The characterization of a highly effective NiO/MgO solid solution catalyst in the CO2 reforming of CH4. Catalysis Letters, 1997, 43(1–2): 71–77

    Article  CAS  Google Scholar 

  23. Mori H, Wen C J, Otomo J, Eguchi K, Takahashi H. Investigation of the interaction between NiO and yttria-stabilized zirconia (YSZ) in the NiO/YSZ composite by temperature-programmed reduction technique. Applied Catalysis A, General, 2003, 245(1): 79–85

    Article  CAS  Google Scholar 

  24. Parmaliana A, Arena F, Frusteri F, Giordano N. Temperatureprogrammed reduction study of NiO-MgO interactions in magnesiasupported Ni catalysts and NiO-MgO physical mixture. Journal of the Chemical Society, Faraday Transactions, 1990, 86(14): 2663–2669

    Article  CAS  Google Scholar 

  25. Zhang J, Wang H, Dalai A K. Kinetic studies of carbon dioxide reforming of methane over Ni-Co/Al-Mg-O bimetallic catalyst. Industrial & Engineering Chemistry Research, 2009, 48(2): 677–684

    Article  Google Scholar 

  26. Damyanova S, Pawelec B, Arishtirova K, Fierro J L G. Ni-based catalysts for reforming of methane with CO2. International Journal of Hydrogen Energy, 2012, 37(21): 15966–15975

    Article  CAS  Google Scholar 

  27. Wei J, Iglesia E. Structural requirements and reaction pathways in methane activation and chemical conversion catalyzed by rhodium. Journal of Catalysis, 2004, 225(1): 116–127

    Article  CAS  Google Scholar 

  28. Wei J, Iglesia E. Isotopic and kinetic assessment of the mechanism of reactions of CH4 with CO2 or H2O to form synthesis gas and carbon on nickel catalysts. Journal of Catalysis, 2004, 224(2): 370–383

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wei, Z. & Wang, Y. Ni/MgO catalyst prepared via dielectric-barrier discharge plasma with improved catalytic performance for carbon dioxide reforming of methane. Front. Chem. Sci. Eng. 8, 133–140 (2014). https://doi.org/10.1007/s11705-014-1422-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-014-1422-1

Keywords

Navigation