Skip to main content
Log in

Effect of sodium ions in synthesis of titanium silicalite-1 on its catalytic performance for cyclohexanone ammoximation

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Titanium silicalite-1 (TS-1) has been hydrothermally synthesized with tetrapropylammonium hydroxide (TPAOH) as the template in the presence of various amounts of Na+, characterized by inductively coupled plasma, X-ray diffraction, scanning electron microscope, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and ultro-violet-visible spectroscopy and studied in cyclohexanone ammoximation. The characterization results show that with the increase of Na+ concentration in the synthesis, both the crystal sizes of TS-1 and extra framework Ti increase but framework Ti decreases. The addition of Na+ below 3 mol-% of TPAOH in the synthesis does not influence the catalytic properties with above 98% conversion of cyclohexanone and 99.5% selectivity to cyclohexanone oxime. However, at the concentrations of Na+⩾3mol-% of TPAOH in the synthesis, the catalysts are deactivated faster with the increase of Na+ addition, which can be attributed to more high molecular weight byproducts deposited in the large TS-1 particles and the loss of the frame-work titanium. The results of this work are of great importance for the industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roffia P, Leofanti G, Cesana A, Mantegazza M, Padovan M, Petrini G, Tonti S, Gervasutti P. Cyclohexanone ammoximation: A break through in the 6-caprolactam production process. Studies in Surface Science and Catalysis, 1990, 55: 43–52

    Article  CAS  Google Scholar 

  2. Dahlhoff G, Niederer J P M, Hoelderich W F. ɛ-Caprolactam: New by-product free synthesis routes. Catalysis Reviews. Science and Engineering, 2001, 43(4): 381–441

    CAS  Google Scholar 

  3. Le Bars J, Dakka J, Sheldon R A. Ammoximation of cyclohexanone and hydroxyaromatic ketones over titanium molecular sieves. Applied Catalysis A, General, 1996, 136(1): 69–80

    Article  Google Scholar 

  4. Tvaruzkova Z, Petras M, Habersberger K, Jiru P. Surface complexes of cyclohexanone and aqueous solution of NH3 on Ti-silicalite in liquid phase. Catalysis Letters, 1992, 13(1–2): 117–122

    Article  CAS  Google Scholar 

  5. Pinelli D, Trifirò F, Vaccari A, Giamello E, Pedulli G. Nature of active sites in catalytic ammoximation of cyclohexanone to the corresponding oxime on amorphous silica: E.P.R. investigations. Catalysis Letters, 1992, 13(1–2): 21–26

    Article  CAS  Google Scholar 

  6. Yip A C K, Lam F L Y, Hu X J. A heterostructured titanium silicalite-1 catalytic composite for cyclohexanone ammoximation. Microporous and Mesoporous Materials, 2009, 120(3): 368–374

    Article  CAS  Google Scholar 

  7. Yasui E, Kawaguchi T, Matsubara T, Kato H. US Patent, 3562328, 1971-09-02

  8. Roffia P, Padovan M, Moretti E, De Alberti G. EP 0208311, 1985-07-10

  9. Thangaraj A, Sivasanker S, Ratanasamy P. Catalytic properties of crystalline titanium silicalites III. Ammoximation of cyclohexanone. Journal of Catalysis, 1991, 131(2): 394–400

    Article  CAS  Google Scholar 

  10. Cesana A, Mantegazza M A, Pastori M. A study of the organic byproducts in the cyclohexanone ammoximation. Journal of Molecular Catalysis A Chemical, 1997, 117(1–3): 367–373

    Article  CAS  Google Scholar 

  11. Dal Pozzo L, Fornsari G, Monti T. TS-1, catalytic mechanism in cyclohexanone oxime production. Catalysis Communications, 2002, 3(8): 369–375

    Article  Google Scholar 

  12. Khouw C B, Davis M E. Catalytic activity of titanium silicates synthesized in the presence of alkali-metal and alkaline-earth ions. Journal of Catalysis, 1995, 151(1): 77–86

    Article  CAS  Google Scholar 

  13. Li G, Wang X, Yan H, Chen Y, Su Q. Effect of sodium ions on propylene epoxidation catalyzed by titanium silicalite. Applied Catalysis A, General, 2001, 218(1–2): 31–38

    Article  CAS  Google Scholar 

  14. Tatsumi T, Koyano K A, Shimizu Y. Effect of potassium on the catalytic activity of TS-1. Applied Catalysis A, General, 2000, 200(1–2): 125–134

    Article  CAS  Google Scholar 

  15. Taramasso M, Perego G, Notari B. US Patent, 4410501, 1983-10-18

  16. Serrano D P, Sanz R, Pizarro P, Moreno I, Frutos P D, Blázquez S. Preparation of extruded catalysts based on TS-1 zeolite for their application in propylene epoxidation. Catalysis Today, 2009, 143(1–2): 151–157

    Article  CAS  Google Scholar 

  17. Ke X B, Xu L, Zeng C F, Zhang L X, Xu N P. Synthesis of mesoporous TS-1 by hydrothermal and steam-assisted dry gel conversion techniques with the aid of triethanolamine. Microporous and Mesoporous Materials, 2007, 106(1–3): 68–75

    Article  CAS  Google Scholar 

  18. Grieneisen J L, Kessler H, Fach E, Govic A M L. Synthesis of TS-1 in fluoride medium. A new way to a cheap and efficient catalyst for phenol hydroxylation. Microporous and Mesoporous Materials, 2000, 37(3): 379–386

    Article  CAS  Google Scholar 

  19. Persson A E, Schoeman B J, Sterte J, Otterstedt J E. Synthesis of stable suspensions of discrete colloidal zeolite (Na, TPA) ZSM-5 crystals. Zeolites, 1995, 15(7): 611–619

    Article  CAS  Google Scholar 

  20. Grieken R V, Sotelo J L, Menéndez J M, Melero J A. Anomalous crystallization mechanism in the synthesis of nanocrystalline ZSM-5. Microporous and Mesoporous Materials, 2000, 39(1–2): 135–147

    Article  Google Scholar 

  21. Nam H J, Amemiya T, Murabayashi M, Itoh K. The influence of Na+ on the crystallite size of TiO2 and the photocatalytic activity. Research on Chemical Intermediates, 2005, 31(4–6): 365–370

    Article  CAS  Google Scholar 

  22. Huybrechts D R C, Vaesen I, Li H X, Jacobs P A. Factors influencing the catalytic activity of titanium silicalites in selective oxidations. Catalysis Letters, 1991, 8(2–4): 237–244

    Article  CAS  Google Scholar 

  23. Boccuti M R, Rao K M, Zecchina A, Leofanti G, Petrini G. Spectroscopic characterization of silicalite and titanium-silicalite. Studies in Surface Science and Catalysis, 1989, 48: 133–144

    Article  Google Scholar 

  24. Zecchina A, Spoto G, Bordiga S, Padovan M, Leofanti G, Petrini G. IR spectra of CO adsorbed at low temperature (77K) on titaniumsilicalite, H-ZSM5 and silicalite. Studies in Surface Science and Catalysis, 1991, 65: 671–680

    Article  CAS  Google Scholar 

  25. Vayssilov G N. Structural and physicochemical features of titanium silicalites. Catalysis Reviews. Science and Engineering, 1997, 39(3): 209–251

    CAS  Google Scholar 

  26. Thangaraj A, Kumar R, Mirajkar S P, Ratnasamy P. Catalytic properties of crystalline titanium silicalites I. Synthesis and characterization of titanium-rich zeolites with MFI structure. Journal of Catalysis, 1991, 130(1): 1–8

    CAS  Google Scholar 

  27. Zecchina A, Spoto G, Bordiga S, Ferrero A, Petrini G, Leofanti G, Padovan M. Framework and extraframework Ti in titaniumsilicalite: Investigation by means of physical methods. Studies in Surface Science and Catalysis, 1991, 69: 251–258

    Article  CAS  Google Scholar 

  28. Kim Y L, Riley R L, Huq M J, Salim S. Le A E, Mallouk T E. Zeolitic materials as organizing media for semiconductor-based artificial photosynthetic systems. MRS Proceedings, 1991, 233: 145–156

    Article  CAS  Google Scholar 

  29. Fan W, Wu P, Namba S, Tatsumi T. A titanosilicate that is structurally analogous to an MWW-type lamellar precursor. Angewandte Chemie International Edition, 2004, 43(2): 236–240

    Article  CAS  Google Scholar 

  30. Fan W, Wu P, Namba S, Tatsumi T. Synthesis and catalytic properties of a new titanosilicate molecular sieve with the structure analogous to MWW-type lamellar precursor. Journal of Catalysis, 2006, 243(1): 183–191

    Article  CAS  Google Scholar 

  31. Fan W, Duan R, Yokoi T, Wu P, Kubota Y, Tatsumi T. Synthesis, crystallization mechanism, and catalytic properties of titanium-rich TS-1 free of extraframework titanium species. Journal of the American Chemical Society, 2008, 130(31): 10150–10164

    Article  CAS  Google Scholar 

  32. Choi J S, Kim D J, Chang S H, Ahn W S. Catalytic applications of MCM-41 with different pore sizes in selected liquid phase reactions. Applied Catalysis A, General, 2003, 254(2): 225–237

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaquan Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, P., Wang, Y., Zhang, T. et al. Effect of sodium ions in synthesis of titanium silicalite-1 on its catalytic performance for cyclohexanone ammoximation. Front. Chem. Sci. Eng. 8, 149–155 (2014). https://doi.org/10.1007/s11705-014-1409-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-014-1409-y

Keywords

Navigation