Skip to main content
Log in

Effect of triethylamine treatment of titanium silicalite-1 on cyclohexanone ammoximation in a continuous system

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

TS-1 has been hydrothermally treated by aqueous solutions of triethylamine, characterized by a number of techniques and studied in the ammoximation of cyclohexanone with NH3 and H2O2 in a continuous system. Some irregular hollow cavities are created after the treatment by desilication. The catalytic activities of TS-1 are not affected, but the catalyst stabilities significantly increase after the treatment, which can be attributed to the generation of the cavities. The treatment conditions are optimized, with the catalyst stability being extended to ten times of the conventional TS-1. After the treatment, triethylamine can be separated simply through distillation and recycled. The causes of deactivation are elucidated to be the deposition of higher weight byproducts formed on the surface of the catalysts and the deactivated TS-1 can be effectively regenerated through calcination in air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Roffia P, Leofanti G, Cesana A, Mantegazza M, Padovan M, Petrini G, Tonti S, Gervasutti P (1990) Stud Surf Sci Catal 55:43–52

    Article  CAS  Google Scholar 

  2. Le Bars J, Dakka J, Sheldon RA (1996) Appl Catal A 136:69–80

    Article  Google Scholar 

  3. Bellussi G, Rigguto MS (2001) Stud Surf Sci Catal 137:911–955

    Article  CAS  Google Scholar 

  4. Ichihashi H, Sato H (2001) Appl Catal A 221:359–366

    Article  CAS  Google Scholar 

  5. Taramasso M, Perego G, Notari B (1983) US patent: 4,410,501

  6. Huybrechts DRC, De Bruycker L, Jacobs PA (1990) Nature 345:240–242

    Article  CAS  Google Scholar 

  7. Wróblewska A (2005) J Mol Catal A-Chem 229:207–210

    Article  Google Scholar 

  8. Wróblewska A, Fajdek A (2010) J Hazard Mater 179:258–265

    Article  Google Scholar 

  9. Wróblewska A, Fajdek A, Milchert E, Grzmil B (2010) Pol J Chem Technol 12:29–34

    Google Scholar 

  10. Wu P, Tatsumia T, Komatsub T, Yashimab T (2001) J Catal 202:245–255

    Article  CAS  Google Scholar 

  11. Barbera D, Cavani F, Dalessandro T, Fornasari G, Guidetti S, Aloise A, Giordano G, Piumetti M, Bonelli B, Zanzottera C (2010) J Catal 275:158–169

    Article  CAS  Google Scholar 

  12. Mantegazza MA, Leofanti G, Petrini G, Padovan M, Zecchina A, Bordiga S (1994) Stud Surf Sci Catal 82:541–550

    Article  CAS  Google Scholar 

  13. Roffia P, Padovan M, Leofanti G, Mantegazza MA, Alberti G De, Tauszik GR (1988) US patent: 4,794,198

  14. Mantegazza MA, Petrini G, Sapno G, Bagatin R, Rivetti F (1999) J Mol Catal 146:223–228

    Article  CAS  Google Scholar 

  15. Zhang YJ, Wang YQ, Bu YF, Wang L, Mi ZT, Wu W, Min EZ, Fu SB, Zhu ZH (2006) React Kinet Catal Lett 87:25–32

    Article  CAS  Google Scholar 

  16. Zecchina A, Bordiga S, Lamberti C, Ricchiardi G, Lamberti C, Ricchiardi G, Scarano D, Petrini G, Leofanti G, Mantegazza M (1996) Catal Today 32:97–106

    Article  CAS  Google Scholar 

  17. Kul’kova NV, Kotova VG, Kvyathovskaya MY, Murzin DY (1997) Chem Eng Technol 20:43–46

    Article  Google Scholar 

  18. Yip ACK, Hu XJ (2011) Ind Eng Chem Res 50:13703–13710

    Article  CAS  Google Scholar 

  19. Thangaraj A, Sivasanker S, Ratanasamy P (1991) J Catal 131:394–400

    Article  CAS  Google Scholar 

  20. Liu TF, Meng XK, Wang YQ, Liang XH, Mi ZT, Qi YJ, Li SY, Wu W, Min EZ, Fu SB (2004) Ind Eng Chem Res 43:166–172

    Article  CAS  Google Scholar 

  21. Zhao S, Xie W, Yang JX, Liu YM, Zhang YT, Xu BL, Jiang JG, He MY, Wu P (2011) Appl Catal A 394:1–8

    Article  CAS  Google Scholar 

  22. Lin Y, Wang YQ, Feng WP, Wu GQ, Xu J, Zhang T, Wang SH, Wu XX, Yao PX (2014) Reac Kinet Mech Cat 112:267–282

    Article  CAS  Google Scholar 

  23. Liang XH, Mi ZT, Wang YQ, Wang L, Zhang XW (2004) React Kinet Catal Lett 82:333–337

    Article  CAS  Google Scholar 

  24. Zuo Y, Wang XS, Guo XW (2011) Ind Eng Chem Res 50:8485–8491

    Article  CAS  Google Scholar 

  25. Yip ACK, Hu XJ (2009) Ind Eng Chem Res 48:8441–8450

    Article  CAS  Google Scholar 

  26. Wu CT, Wang YQ, Mi ZT, Xue L, Wu W, Min EZ, Han S, He F, Fu SB (2002) React Kinet Catal Lett 77:73–81

    Article  CAS  Google Scholar 

  27. Venkatathri N, Nookaraju M, Rajini A, Redd IAK (2013) Bull Korean Chem Soc 34:143–148

    Article  Google Scholar 

  28. Zhang YJ, Wang YQ, Bu YF, Wang L, Mi ZT, Wu W, Min EZ, Fu SB, Zhu ZH (2005) React Kinet Catal Lett 87:25–32

    Article  Google Scholar 

  29. Deniz CU, Akmaz S, Yasar M (2013) Int J Chem React Eng 11:527–534

    Google Scholar 

  30. Wu P, Komatsu T, Yashima T (1997) J Catal 168:400–411

    Article  CAS  Google Scholar 

  31. Zhang XJ, Wang Y, Xin F (2006) Appl Catal A 307:222–230

    Article  CAS  Google Scholar 

  32. Van Donk S, Janssen AH, Bitter JH, Jong KP (2003) Catal Rev 45:297–319

    Article  Google Scholar 

  33. Tao YS, Kanoh H, Abrams L, Kaneko K (2006) Chem Rev 106:896–910

    Article  CAS  Google Scholar 

  34. Wang YR, Tuel A (2008) Micropor Mesopor Mater 113:286–295

    Article  CAS  Google Scholar 

  35. Groen JC, Peffer LAA, Moulijn JA, Pérez-Ramírez J (2004) Micropor Mesopor Mater 69:29–34

    Article  CAS  Google Scholar 

  36. Silvestre-Albero A, Grau-Atienza A, Serrano E, García-Martínez J, Silvestre-Albero J (2014) Catal Commun 44:35–39

    Article  CAS  Google Scholar 

  37. Lin M, Shu XT, Wang XQ, Zhu B (2002) US patent: 6,475,465

  38. Lin M, Shu XT, Wang XQ (1999) Petro Process 30:1–4

    CAS  Google Scholar 

  39. Wang YR, Lin M, Tuel A (2007) Micropor Mesopor Mater 102:80–85

    Article  CAS  Google Scholar 

  40. Tsai ST, Chao PY, Tsai TC, Wang I, Liu XX, Guo XW (2009) Catal Today 148:174–178

    Article  CAS  Google Scholar 

  41. Zuo Y, Song WC, Dai CY, He YP, Wang ML, Wang XS, Guo XW (2013) Appl Catal A 453:272–279

    Article  CAS  Google Scholar 

  42. Thangaraj A, Eapen MJ, Sivasanker S, Ratnasamy P (1992) Zeolites 12:943–950

    Article  CAS  Google Scholar 

  43. Wu GQ, Wang YQ, Wang LN, Feng WP, Shi HN, Lin Y, Zhang T, Jin X, Wang SH, Wu XX, Yao PX (2013) Chem Eng J 215–216:306–314

    Article  Google Scholar 

  44. Duprey E, Beaunier P, Springuel-Huet MA, Bozon-Verduraz F, Fraissard J, Manoli JM, Brégeault JM (1997) J Catal 165:22–32

    Article  CAS  Google Scholar 

  45. Lin JZ, Xin F, Yang LB, Zhuang Z (2014) Catal Commun 45:104–108

    Article  CAS  Google Scholar 

  46. Groen JC, Moulijn JA, Pérez-Ramírez J (2007) Ind Eng Chem Res 46:4193–4201

    Article  CAS  Google Scholar 

  47. Fejes P, Nagy JB, Halász J, Oszkó A (1998) Appl Catal A 175:89–104

    Article  CAS  Google Scholar 

  48. Ricchiardi G, Damin A, Bordiga S, Lamberti C, Spanò G, Rivetti F, Zecchina A (2001) J Am Chem Soc 123:11409–11419

    Article  CAS  Google Scholar 

  49. Sun ZL, Zhang YM, Deng XY, Li JB, Xiong CR (2012) J Ind Eng Chem 18:92–97

    Article  CAS  Google Scholar 

  50. Thangaraj A, Kumar R, Mirajkar SP, Ratnasamy P (1991) J Catal 130:1–8

    Article  CAS  Google Scholar 

  51. Tatsumi T, Jappar N (1996) J Catal 161:570–576

    Article  CAS  Google Scholar 

  52. Astorino E, Peri JB, Willey RJ, Busca G (1995) J Catal 157:482–500

    Article  CAS  Google Scholar 

  53. Lin WY, Frei H (2002) J Am Chem Soc 124:9292–9298

    Article  CAS  Google Scholar 

  54. Astorino E, Peri JB, Willey RJ, Busca G (1995) J Catal 157:482–500

    Article  CAS  Google Scholar 

  55. Serrano DP, Calleja G, Botas JA, Gutierrez FJ (2007) Sep Pur Technol 54:1–9

    Article  CAS  Google Scholar 

  56. On DT, Kaliaguine S, Bonneviot L (1995) J Catal 157:235–243

    Article  CAS  Google Scholar 

  57. Jorda E, Tuel A, Teissier R, Kervennal J (1997) Zeolites 19:238–245

    Article  CAS  Google Scholar 

  58. Ratnasamy P, Srinivas D, Knözinger H (2004) Adv Catal 48:1–169

    CAS  Google Scholar 

  59. Huang DG, Zhang X, Liu TW, Huang C, Chen BH, Luo CW, Ruckenstein E, Chao ZS (2013) Ind Eng Chem Res 52:3762–3772

    CAS  Google Scholar 

  60. Zhao Q, Bao XH, Han XW, Liu XM, Tan DL, Lin LW, Guo XW, Li G, Wang XS (2000) Mater Chem Phys 66:41–50

    Article  CAS  Google Scholar 

  61. Axon SA (1992) Klinowski Jacek. Appl Catal A 81:27–34

    Article  CAS  Google Scholar 

  62. Zhang YH, Guo XW, Wang XS, Li G, Chen YY (2000) Acta Pet Sin 16:41–46

    CAS  Google Scholar 

  63. Sun B (2005) Pet Process Petrochem 36:54–58

    CAS  Google Scholar 

  64. Petrini G, Cesana A, Alberti GD, Genoni F, Leofanti G, Padovan M, Paparatto G, Roffia P (1991) Stud Surf Sci Catal 68:761–766

    Article  CAS  Google Scholar 

  65. Liu YQ, Li YX, Wu W, Min EZ (2002) Petro Process Petchem 33:41–45

    CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by Natural Science Foundation of China with Grant No. 21276183 and Program of Introducing Talents of Discipline to Universities (No: B06006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaquan Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4790 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Wang, Y., Wang, S. et al. Effect of triethylamine treatment of titanium silicalite-1 on cyclohexanone ammoximation in a continuous system. Reac Kinet Mech Cat 114, 735–752 (2015). https://doi.org/10.1007/s11144-014-0792-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-014-0792-1

Keyword

Navigation