Skip to main content
Log in

Modeling of the separation performance of nanofiltration membranes and its role in the applications of nanofiltration technology in product separation processes

  • Review Article
  • Published:
Frontiers of Chemical Engineering in China Aims and scope Submit manuscript

Abstract

Although there is a voluminous literature on the determination of structural parameters (the pore radius, the ratio of membrane porosity to membrane thickness) of a nanofiltration (NF) membrane and its separation performance (such as the rejection and the permeation flux) by the simplified Teorell-Meyer-Sievers (TMS) model, little of this research comments on other theories and the consequences of linking modeling evaluation to technological application. Theories used to predict the separation performance of an NF membrane usually include: the non-equilibrium thermodynamic model, the pore model, the space charge model, the TMS model, the electrostatic and steric-hindrance model, and the semiempirical model. In the article, we briefly trace the origins or the general ideas of the above-mentioned theories. From there, recent researches on the characterization of membrane structural parameters and electrical properties (such as the surface charge density q w ) are reviewed. We then turn to research on the separation performance of an NF membrane for single-component solutions of inorganic electrolytes, neutral organic solutions, and a mixture solution of electrolytes or that of an electrolyte and neutral organic solute. Afterwards, we outline the applications of NF technology in the processes of product separation and conclude with a discussion on the role of models in such applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schafer A I, Fane A G, Waite T D. Nanofiltration: Principles and Applications. Oxfotd: Elsevier Ltd, 2005, 6–31, 263–304

    Google Scholar 

  2. Petersen R J. Composite reverse osmosis and nanofiltration membranes. J Membr Sci, 1993, 83: 81–150

    Article  CAS  Google Scholar 

  3. Nakao S I. Determination of pore size and pore size distribution (3): Filtration membranes. J Membr Sci, 1994, 96: 131–165

    Article  CAS  Google Scholar 

  4. Wang X L, Tsuru T, Nakao S I, Kimura S. Electrolyte transport through nanofiltration membranes by the space-charge model and the comparison with Teorell-Meyer-Sievers model. J Membr Sci, 1995, 103: 117–133

    Article  CAS  Google Scholar 

  5. Fievet P, Labbez C, Szymczyk A, Vidonne A, Foissy A, Pagetti J. Electrolyte transport through amphoteric nanofiltration membranes. Chem Eng Sci, 2002, 57: 2921–2931

    Article  CAS  Google Scholar 

  6. Wang X L, Zhang C H, Ouyang P K. The possibility of separating saccharides from a NaCl solution by using nanofiltration in diafiltration mode. J Membr Sci, 2002, 204: 271–281

    Article  CAS  Google Scholar 

  7. Wang X L, Ying A L, Wang W N. Nanofiltration of L-phenylalanine and L-aspartic acid aqueous solutions. J Membr Sci, 2002, 196: 59–67

    Article  CAS  Google Scholar 

  8. Li S L, Li C, Liu Y S, Wang S L, Cao Z A. Separation of L-glutamine from fermentation broth by nanofiltration. J Membr Sci, 2003, 222: 191–201

    Article  CAS  Google Scholar 

  9. Wang D X, Wang X L, Tomi Y, Ando M, Shintani T. Modeling the separation performance of nanofiltration membranes for the mixed salts solution. J Membr Sci, 2006, 280: 734–743

    Article  CAS  Google Scholar 

  10. Wang D X, Wu L, Liao Z D, Wang X L, Ando M, Shintani T. Modeling the separation performance of nanofiltration membranes for the mixed salts solution with Mg2+ and Ca2+. J Membr Sci, 2006, 284: 384–392

    Article  CAS  Google Scholar 

  11. Jiraratananon R, Sungpet A, Luangsowan P. Performance evaluation of nanofiltration membranes of nanofiltration membranes for treatment of effuents containing reactive dye and salt. Desalination, 2000, 130: 177–183

    Article  CAS  Google Scholar 

  12. Ducom G, Cabassud C. Interests and limitation of nanofiltration for the removal of voltaic organic compounds in drinking water production. Desalination, 1999, 124: 115–123

    Article  CAS  Google Scholar 

  13. Schaep J, Vandecasteele C. Evaluating the charge of nanofiltration membranes. J Membr Sci, 2001, 188: 129–136

    Article  CAS  Google Scholar 

  14. Wang X L, Tsuru T, Togoh M, Nakao S I, Kimura S. Evaluation of pore structure and electrical properties of nanofiltration membranes. J Chem Eng Japan, 1995, 28: 186–192

    Article  CAS  Google Scholar 

  15. Vrijenhoek E M, Waypa J J. Arsenic removal from drinking water by a “loose” nanofiltration membrane. Desalination, 2000, 130: 265–277

    Article  CAS  Google Scholar 

  16. Nakao S I, Kimura S. Models of membrane transport phenomena and their application for ultrafiltration data. J Chem Eng Japan, 1982, 15: 200–205

    CAS  Google Scholar 

  17. Spiegler K S, Kedem O. Thermodynamics of hyperfiltration (reverse osmosis): Criteria for efficient membranes. Desalination, 1966, 1: 311–326

    Article  CAS  Google Scholar 

  18. Tsuru T, Nakao S I, Kimura S. Effective charge density and pore structure of charged ultrafiltration membranes. J Chem Eng Japan, 1990, 23: 604–610

    Article  CAS  Google Scholar 

  19. Shang W J, Wang X L, Yu Y X. Transport phenomena of charged membranes based on the charge model. J Chem Ind Eng (China), 2006, 57(8): 1827–1834 (in Chinese)

    CAS  Google Scholar 

  20. Yaroshchuk A E. Osmosis and reverse osmosis in fine-porous charged diaphragms and membranes. Adv Colloid Interf Sci, 1995, 60: 1–93.

    Article  CAS  Google Scholar 

  21. Morrison F A Jr, Osterle J F. Electrokinetic erergy conversion in ultrafine capillaries. J Chem Phys, 1965, 43(6): 2111–2114

    Article  CAS  Google Scholar 

  22. Gross R J, Osterle J F. Membrane transport characteristics of ultrafine capillaries. J Chem Phys, 1968, 49(1): 228–233

    Article  PubMed  CAS  Google Scholar 

  23. Teorell T. Diffusion effect upon ionic distribution (I): Theoretical. P Natl Acad Sci USA, 1935, 21(15): 152–161

    Article  ADS  CAS  Google Scholar 

  24. Sievers K H, Sievers J F. Théorie de la perméabilité ionique. Helv Chim Acta, 1936, 19: 629–664

    Google Scholar 

  25. Sievers K H, Sievers J F. Essais avec des membranes sélectives artificielles. Helv Chim Acta, 1936, 19: 665–677

    Article  Google Scholar 

  26. Sievers K H, Sievers J F. Analyse de la structure de membrane végétales et animales. Helv Chim Acta, 1936, 19: 987–995

    Article  Google Scholar 

  27. Burggraaf A J, Cot L. Fundamentals of Inorganic Membrane Science and Technology. Amsterdam: Elsevier Science, 1996, 599–601

    Google Scholar 

  28. Katchalsky A, Curran P R. Nonequilibrium Thermodynamics in Biophysics. Cambridge: Harvard University Press, 1965, 83–97

    Google Scholar 

  29. Onsager L. Reciprocal relations in irreversible processes (I). Phys Rev, 1931, 37(4): 405–426; (II). Phys Rev, 38(12): 2265–2289

    Article  MATH  ADS  CAS  Google Scholar 

  30. Wang X L, Tsuru T, Togoh M, Nakao S I, Kimura S. Transport of organic electrolytes with electrostatic and steric-hindrance effects through nanofiltration membranes. J Chem Eng, 1995, 28(4): 372–380

    Article  CAS  Google Scholar 

  31. Wang X L, Tsuru T, Nakao S I, Kimura S. The electrostatic and steric-hindrance model for the transport of charged solutes through nanofiltration membranes. J Membr Sci, 1997, 135: 19–32

    Article  CAS  Google Scholar 

  32. Tsuru T, Nakao S I, Kimura S. Calculation of ion rejection by extended Nernst-Planck equation with charged reverse osmosis membranes for single and mixed electrolyte solutions. J Chem Eng Japan, 1991, 24(4): 511–517

    Article  CAS  Google Scholar 

  33. Bowen W R, Mukhtar H. Characterization and prediction of separation performance of nanofiltration membranes. J Membr Sci, 1996, 112(2): 263–274

    Article  CAS  Google Scholar 

  34. Bowen W R, Welfoot J S, Mukhtar H. Linearized transport model for nanofiltration: Development and assessment. AIChE J, 2002, 48: 760–773

    Article  CAS  Google Scholar 

  35. Aleman J G, Dickson J M. Permeation of mixed-salt solutions with commercial and pore-filled nanofiltration membranes: membrane charge inversion phenomena. J Membr Sci, 2004, 239(2): 163–172

    Article  CAS  Google Scholar 

  36. Bandini S, Vezzani D. Nanofiltration modeling: the role of dielectric exclusion in membrane characterization. Chem Eng Sci, 2003, 58(15): 3303–3326

    Article  CAS  Google Scholar 

  37. Wang X L, Wang W N, Wang D X. Experimental investigation on separation performance of nanofiltration membranes for inorganic electrolyte solutions. Desalination, 2002, 145: 115–122

    Article  CAS  Google Scholar 

  38. Wang D X, Su M, Yu Z Y, Wang X L, Ando M, Shitani T. Separation performance of a nanofiltration membrane influenced by species and concentration of ions. Desalination, 2005, 175: 219–225

    Article  CAS  Google Scholar 

  39. Su M, Wang D X, Wang X L, Ando M, Shitani T. Rejection of ions by NF membranes for binary electrolyte solutions of NaCl, NaNO3, CaCl2, and Ca(NO3)2. Desalination, 2006, 191: 303–308

    Article  CAS  Google Scholar 

  40. Miller M D, Bruening M L. Controlling the nanofiltration properties of multilayer polyelectrolyte membranes through variation of film composition. Langmuir, 2004, 20: 11545–11551

    Article  PubMed  CAS  Google Scholar 

  41. Goulas A K, Kapasakalidis P G, Sinclair H R, Rastall R A, Grandison A S. Purification of oligosaccharides by nanofiltration. J Membr Sci, 2002, 209: 321–335

    Article  CAS  Google Scholar 

  42. Gyura J, Seres Z, Vatai G, Molnar E B. Separation of non-sucrose compounds from the syrup of sugar-beet processing by ultra-and nanofiltration using polymer membrane. Desalination, 2002, 148: 49–56

    Article  CAS  Google Scholar 

  43. Vellenga E, Tragardh G. Nanofiltration of combined salt and sugar solutions: Coupling between retentions. Desalination, 1998, 120: 211–220

    Article  CAS  Google Scholar 

  44. Tsuru T, Shutou T, Nakao S I, Kimura S. Peptide and amino acid separation with nanofiltration membranes. Sep Sci Technol, 1994, 29: 971–984

    CAS  Google Scholar 

  45. Martin-Orue C, Bouhallab S, Garem A. Nanofiltration of amino and peptide solution: Mechanisms of separation. J Membr Sci, 1998, 142: 225–233

    Article  CAS  Google Scholar 

  46. Timmer J M K, Speelmans M P J, van der Horst H C. Separation of amino acids by nanofiltration and ultrafiltration membranes. Sep Purif Technol, 1998, 14:133–144

    Article  CAS  Google Scholar 

  47. Grib H, Persin M, Gavach C, Piron D L, Sandeaux J, Mameri N. Amino acid retention with alumina γ nanofiltration membrane. J Membr Sci, 2000, 172: 9–17

    Article  CAS  Google Scholar 

  48. Li S L, Li C, Liu Y S, Wang X L, Cao Z A. Separation of L-glutamine from fermentation broth by nanofiltration. J Membr Sci, 2003, 222: 191–201

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Xiaolin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shang, W., Wang, D. & Wang, X. Modeling of the separation performance of nanofiltration membranes and its role in the applications of nanofiltration technology in product separation processes. Front. Chem. Eng. China 1, 208–215 (2007). https://doi.org/10.1007/s11705-007-0038-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-007-0038-0

Keywords

Navigation