Skip to main content
Log in

Morphologies of diblock copolymer confined in a slit with patterned surfaces studied by dissipative particle dynamics

  • Research Article
  • Published:
Frontiers of Chemical Engineering in China Aims and scope Submit manuscript

Abstract

Diblock copolymers with ordered mesophase structures have been used as templates for nano-fabrication. Unfortunately, the ordered structure only exists at micromete rscale areas, which precludes its use in many advanced applications. To overcome this disadvantage, the diblock copolymer confined in a restricted system with a patterned surface is proved to be an effective means to prohibit the formation of defects and obtain perfect ordered domains. In this work, the morphologies of a thin film of diblock copolymer confined between patterned and neutral surfaces were studied by dissipative particle dynamics. It is shown that the morphology of the symmetric diblock copolymer is affected by the ratio of the pattern period on the surface to the lamellar period of the symmetric diblock copolymer and by the repulsion parameters between blocks and wall particles. To eliminate the defects in the lamellar phase, the pattern period on the surface must match the lamellar period. The difference in the interface energy of different compartments of the pattern should increase with increasing film thickness. The pattern period on the surface has a scaling relationship with the chain length, which is the same as that between the lamellar period and the chain length. The lamellar period is also affected by the polydispersity of the symmetric diblock copolymer. The total period is the average of the period of each component multiplied by the weight of its volume ratio. The morphologies of asymmetric diblock copolymers are also affected by the pattern on the surface, especially when the matching period of the asymmetric diblock copolymer is equal to the pattern period, which is approximately equal to the lamellar period of a symmetric diblock copolymer with the same chain length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bates F S, Frederickson G H. Block copolymer thermodynamicstheory and experiment. Annu Rev Phys Chem, 1990, 41: 525

    Article  CAS  Google Scholar 

  2. Almdal K, Rosedale J H, Bates F S, Wignall G D, Fredrickson G H. Gaussian-to stretched-coil transition in block copolymer melts. Phys Rev Lett, 1990, 65: 1112–1115

    Article  PubMed  ADS  CAS  Google Scholar 

  3. Leibler L. Theory of microphase separation in block copolymer. Macromolecules, 1980, 13: 1602–1617

    Article  CAS  Google Scholar 

  4. Matsen M W, Bates F S. Unifying weak-and strong-segregation block copolymer theories. Macromolecules, 1996, 29: 1091–1098

    Article  CAS  Google Scholar 

  5. Fraaije J G E M. Dynamic density functional theory for microphase separation kinetics of block copolymer melts. J Chem Phys, 1993, 99: 9202–9212

    Article  ADS  CAS  Google Scholar 

  6. Jo W H, Jang S S. Monte Carlo simulation of the order-disorder transition of a symmetric cyclic diblock copolymer system. J Chem Phys, 1999, 111: 1712–1720

    Article  ADS  CAS  Google Scholar 

  7. Feng J, Ruckenstein E. Monte Carlo simulation of triblock copolymer thin films. Polymer, 2002, 43: 5775–5790

    Article  CAS  Google Scholar 

  8. Lambooy P, Russell T P, Kellogg G J, Mayers A M, Gallapher P D, Satija S K. Observed frustration in confined block copolymers. Phys Rev Lett, 1994, 72: 2899–2902

    Article  PubMed  ADS  CAS  Google Scholar 

  9. Koneripalli N, Singh N, Levicky R, Bates F S. Confined block copolymer thin films. Macromolecules, 1995, 28: 2897–2904

    Article  CAS  Google Scholar 

  10. Kellogg G J, Walton D G, Mayes A M, Lambooy P, Russell T P, Gallapher P D, Satija S K. Observed surface energy effects in confined diblock copolymers. Phys Rev Lett, 1996, 76: 2503–2506

    Article  PubMed  ADS  CAS  Google Scholar 

  11. Koneripalli N, Levicky R, Bates F S, Ankner J, Kaiser H, Satija S K. Confinement-induced morphological changes in diblock copolymer films. Langmuir, 1996, 12: 6681–6690

    Article  CAS  Google Scholar 

  12. Huang E, Russell T P, Harrison C, Chaikin P M, Register R A, Hawker C J, Mays J. Using surface active random copolymers to control the domain orientation in diblock copolymer thin films. Macromolecules, 1998, 31: 7641–7650

    Article  CAS  Google Scholar 

  13. Pickett G T, Balazs A C. Equilibrium orientation of confined diblock copolymer films. Macromolecules, 1997, 30: 3097–3103

    Article  CAS  Google Scholar 

  14. Matsen M W. The films of block copolymer. J Chem Phys, 1997, 106: 7781–7791

    Article  ADS  CAS  Google Scholar 

  15. Shull K R. Mean-field theory of block copolymers: bulk melts, surfaces, and thin films. Macromolecules, 1992, 25: 2122–2133

    Article  CAS  Google Scholar 

  16. Turner M S. Equilibrium properties of a diblock copolymer lamellar phase confined between flat plates. Phys Rev Lett, 1992, 69: 1788–1791

    Article  PubMed  ADS  CAS  Google Scholar 

  17. Walton D G, Kellogg G J, Mayes A M, Lambooy P, Russell T P. A free energy model for confined diblock copolymers. Macromolecules, 1994, 27: 6225–6228

    Article  CAS  Google Scholar 

  18. Brown G, Chakrabarti A. Ordering of block copolymer melts in confined geometry. J Chem Phys, 1995, 102: 1440–1448

    Article  ADS  CAS  Google Scholar 

  19. Kikuchi M, Binder K. Monte Carlo study of thin films of the symmetric diblock copolymer melt. Europhys Lett, 1993, 21:427–432

    ADS  CAS  Google Scholar 

  20. Kikuchi M, Binder K. Microphase separation in thin films of the symmetric diblock-copolymer melt. J Chem Phys, 1994, 101:3367

    Article  ADS  CAS  Google Scholar 

  21. Wang Q, Yan Q L, Nealey P F, de Pablo J J. Monte Carlo simulations of diblock copolymer thin films confined between two homogeneous surface. J Chem Phys, 2000, 112: 450–464

    Article  ADS  CAS  Google Scholar 

  22. Huang Y M, Liu H L, Hu Y. Monte Carlo simulation for the morphologies and conformations of triblock copolymer melt films. Macrom Theory Simul, 2006, 15: 117–127

    Article  CAS  Google Scholar 

  23. Kim S O, Solak H H, Stoykovich M P, Ferrier N J, de Pablo J J, Nealey P F. Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates. Nature, 2003, 424(24): 411–414

    Article  PubMed  ADS  CAS  Google Scholar 

  24. Edwards E W, Stoykovich M P, Müller M, Solak H H, de Pablo J J, Nealey P F. Mechanism and kinetics of ordering in diblock copolymer thin films on chemically nanopatterned substrates. J Polym Sci B, 2005, 43(23): 3444–3459

    Article  CAS  Google Scholar 

  25. Petera D, Muthukumar M. Self-consistent field theory of diblock copolymer melts at patterned surfaces. J Chem Phys, 1998, 109(12): 5101–5107

    Article  ADS  CAS  Google Scholar 

  26. Pereira G G, Williams D R M. Lamellar interface distortions of thin, commensurately aligned diblock copolymer films on patterned surfaces. Langmuir, 1999, 15: 2125–2129

    Article  CAS  Google Scholar 

  27. Tsori Y, Andelman D. Ordering mechanisms in confined diblock copolymers. Interface Sci, 2003, 11: 259–268

    Article  CAS  Google Scholar 

  28. Wang Q, Nath S K, Graham M D, Nealey P F, de Pablo J J. Symmetric diblock copolymer thin films confined between homogeneous and patterned surfaces: simulations and theory. J Chem Phys, 2000, 112(22): 9996–10010

    Article  ADS  CAS  Google Scholar 

  29. Chen Y Z, Huang H Y, Hu Z J, He T B. Lateral nanopatterns in thin diblock copolymer films induced by selective solvents. Langmuir, 2004, 20: 3805–3808

    Article  PubMed  CAS  Google Scholar 

  30. Hoogerbrugge P J, Koelman J M V A. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys Lett, 1992, 19: 155–160

    ADS  Google Scholar 

  31. Espańol P, Warren P. Statistical mechanics of dissipative particle dynamics. Europhys Lett, 1995, 30: 191–196

    Google Scholar 

  32. Groot R D, Warren P B. Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J Chem Phys, 1997, 107: 4423–4435

    Article  ADS  CAS  Google Scholar 

  33. Groot R D, Madden T J. Dynamic simulation of diblock copolymer microphase separation. J Chem Phys, 1998, 108:8713–8724

    Article  ADS  CAS  Google Scholar 

  34. Groot R D. Mesoscopic simulation of polymer-surfactant aggregation. Langmuir, 2000, 16: 7493–7502

    Article  CAS  Google Scholar 

  35. Yamamoto S, Maruyama Y, Hyodo S. Dissipative particle dyna mics study of spontaneous vesicle formation of amphiphilic molecules. J Chem Phys, 2002, 116: 5842–5849

    Article  ADS  CAS  Google Scholar 

  36. Groot R D. Electrostatic interactions in dissipative particle dynamics-simulation of polyelectrolytes and anionic surfactants. J Chem Phys, 2003, 118: 11265–11277

    Article  ADS  CAS  Google Scholar 

  37. Revenga M, Zúňiga I, Espaňol P, Pagonabarraga I. Bundary model in DPD. Int J Mod Phys C, 1998, 9(8): 1319–1328

    Article  ADS  Google Scholar 

  38. Malfreyt P, Tildesley D J. Dissipative particle dynamics simulations of grafted polymer chains between two walls. Langmuir, 2000, 16: 4732–4740

    Article  CAS  Google Scholar 

  39. Hashimoto T, Shibayama M, Kawai H. Domain-boundary structure of styrene-isoprene block copolymer films cast from solution. (4): Molecular-weight dependence of lamellar microdomains. Macromolecule, 1980, 13: 1237–1247

    Article  CAS  Google Scholar 

  40. Yin Y, Sun P, Jiang R, Li B, Jin Q, Ding D, Shi A C. Simulated annealing study of asymmetric diblock copolymer thin films. J Chem Phys, 2006, 124: 184708

    Article  PubMed  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Honglai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, J., Huang, Y., Liu, H. et al. Morphologies of diblock copolymer confined in a slit with patterned surfaces studied by dissipative particle dynamics. Front. Chem. Eng. China 1, 132–139 (2007). https://doi.org/10.1007/s11705-007-0025-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-007-0025-5

Keywords

Navigation