Skip to main content

Advertisement

Log in

Clinical applications of robotic surgery platforms: a comprehensive review

  • Review
  • Published:
Journal of Robotic Surgery Aims and scope Submit manuscript

Abstract

Robotic surgery has expanded globally across various medical specialties since its inception more than 20 years ago. Accompanying this expansion were significant technological improvements, providing tremendous benefits to patients and allowing the surgeon to perform with more precision and accuracy. This review lists some of the different types of platforms available for use in various clinical applications. We performed a literature review of PubMed and Web of Science databases in May 2023, searching for all available articles describing surgical robotic platforms from January 2000 (the year of the first approved surgical robot, da Vinci® System, by Intuitive Surgical) until May 1st, 2023. All retrieved robotic platforms were then divided according to their clinical application into four distinct groups: soft tissue robotic platforms, orthopedic robotic platforms, neurosurgery and spine platforms, and endoluminal robotic platforms. Robotic surgical technology has undergone a rapid expansion over the last few years. Currently, multiple robotic platforms with specialty-specific applications are entering the market. Many of the fields of surgery are now embracing robotic surgical technology. We review some of the most important systems in clinical practice at this time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article. Raw data that support the findings are available from the corresponding author (AG) upon reasonable request.

References

  1. Kumar A, Yadav N, Singh S et al (2016) Minimally invasive (endoscopic-computer assisted) surgery: technique and review. Ann Maxillofac Surg 6(2):159. https://doi.org/10.4103/2231-0746.200348

    Article  PubMed  PubMed Central  Google Scholar 

  2. Walker AS, Steele SR (2016) The future of robotic instruments in colon and rectal surgery. Semin Colon Rectal Surg 27(3):144–149. https://doi.org/10.1053/j.scrs.2016.04.006

    Article  Google Scholar 

  3. Himpens J, Leman G, Cadiere GB (1998) Telesurgical laparoscopic cholecystectomy. Surg Endosc 12(8):1091–1091. https://doi.org/10.1007/s004649900788

    Article  CAS  PubMed  Google Scholar 

  4. George EI, Brand TC, LaPorta A et al (2018) Origins of robotic surgery: from skepticism to standard of care. JSLS 22(4):e2018. https://doi.org/10.4293/JSLS.2018.00039

  5. Simorov A, Otte RS, Kopietz CM et al (2012) Review of surgical robotics user interface: what is the best way to control robotic surgery? Surg Endosc 26(8):2117–2125. https://doi.org/10.1007/s00464-012-2182-y

    Article  PubMed  Google Scholar 

  6. Oleynikov D (2008) Robotic surgery. Surg Clin North Am 88(5):1121–1130. https://doi.org/10.1016/j.suc.2008.05.012

    Article  PubMed  Google Scholar 

  7. Marchegiani F, Siragusa L, Zadoroznyj A et al (2023) New robotic platforms in general surgery: what’s the current clinical scenario? Medicina (Mex) 59(7):1264. https://doi.org/10.3390/medicina59071264

    Article  Google Scholar 

  8. Rassweiler JJ, Autorino R, Klein J et al (2017) Future of robotic surgery in urology. BJU Int 120(6):822–841. https://doi.org/10.1111/bju.13851

    Article  PubMed  Google Scholar 

  9. Anonymous (n.d.) Robotic surgical systems | Da Vinci | Ion | Intuitive. https://www.intuitive.com/en-us. Accessed 7 June 2023

  10. Bhat KRS, Moschovas MC, Onol FF et al (2021) Evidence-based evolution of our robot-assisted laparoscopic prostatectomy (RALP) technique through 13,000 cases. J Robot Surg 15(4):651–660. https://doi.org/10.1007/s11701-020-01157-5

    Article  PubMed  Google Scholar 

  11. Shin HR, Lee K, Yu HW et al (2021) Comparison of perioperative outcomes using the da vinci S, Si, X, and Xi robotic platforms for BABA robotic thyroidectomy. Medicina (Mex) 57(10):1130. https://doi.org/10.3390/medicina57101130

    Article  Google Scholar 

  12. Crusco S, Jackson T, Advincula A (2014) Comparing the da Vinci si single console and dual console in teaching novice surgeons suturing techniques. JSLS 18(3):e2014. https://doi.org/10.4293/JSLS-D-13-0021

  13. Covas Moschovas M, Bhat S, Rogers T et al (2021) Applications of the da Vinci single port (SP) robotic platform in urology: a systematic literature review. Minerva Urol Nephrol 73(1). https://doi.org/10.23736/S2724-6051.20.03899-0.

  14. Moschovas MC, Seetharam Bhat KR, Onol FF et al (2021) Single-port technique evolution and current practice in urologic procedures. Asian J Urol 8(1):100–104. https://doi.org/10.1016/j.ajur.2020.05.003

    Article  PubMed  Google Scholar 

  15. Samalavicius NE, Janusonis V, Siaulys R et al (2020) Robotic surgery using Senhance® robotic platform: single center experience with first 100 cases. J Robot Surg 14(2):371–376. https://doi.org/10.1007/s11701-019-01000-6

    Article  PubMed  Google Scholar 

  16. Lim JH, Lee WJ, Park DW et al (2017) Robotic cholecystectomy using Revo-i Model MSR-5000, the newly developed Korean robotic surgical system: a preclinical study. Surg Endosc 31(8):3391–3397. https://doi.org/10.1007/s00464-016-5357-0

    Article  PubMed  Google Scholar 

  17. Kim DK, Park DW, Rha KH (2016) Robot-assisted partial nephrectomy with the REVO-I robot platform in porcine models. Eur Urol 69(3):541–542. https://doi.org/10.1016/j.eururo.2015.11.024

    Article  PubMed  Google Scholar 

  18. Chang KD, Abdel Raheem A, Choi YD et al (2018) Retzius-sparing robot-assisted radical prostatectomy using the Revo-i robotic surgical system: surgical technique and results of the first human trial. BJU Int 122(3):441–448. https://doi.org/10.1111/bju.14245

    Article  CAS  PubMed  Google Scholar 

  19. Dixon F, Khanna A, Vitish-Sharma P et al (2021) Initiation and feasibility of a multi-specialty minimally invasive surgical programme using a novel robotic system: a case series. Int J Surg 96:106182. https://doi.org/10.1016/j.ijsu.2021.106182

    Article  PubMed  Google Scholar 

  20. Thomas BC, Slack M, Hussain M et al (2021) Preclinical evaluation of the versius surgical system, a new robot-assisted surgical device for use in minimal access renal and prostate surgery. Eur Urol Focus 7(2):444–452. https://doi.org/10.1016/j.euf.2020.01.011

    Article  PubMed  Google Scholar 

  21. Kinross JM, Mason SE, Mylonas G et al (2020) Next-generation robotics in gastrointestinal surgery. Nat Rev Gastroenterol Hepatol 17(7):430–440. https://doi.org/10.1038/s41575-020-0290-z

    Article  PubMed  Google Scholar 

  22. Rao PP (2018) Robotic surgery: new robots and finally some real competition! World J Urol 36(4):537–541. https://doi.org/10.1007/s00345-018-2213-y

    Article  PubMed  Google Scholar 

  23. Gkeka K, Tsaturyan A, Faitatziadis S et al (2023) Robot-assisted radical nephrectomy using the novel avatera robotic surgical system: a feasibility study in a porcine model. J Endourol 37(3):273–278. https://doi.org/10.1089/end.2022.0596

    Article  PubMed  Google Scholar 

  24. Anonymous (n.d.) SYSTEM│hinotori robotic assisted surgery system│PRODUCT│medicaroid. https://www.medicaroid.com/en/product/hinotori/. Accessed 4 June 2023

  25. Suzuki Y, Sato H, Nakazawa N (2023) Current status of robotic surgery in Japan gynecologic field. Intell Surg 6:25–30. https://doi.org/10.1016/j.isurg.2023.03.001

    Article  Google Scholar 

  26. Miyake H, Motoyama D, Matsushita Y et al (2023) Initial Experience of robot-assisted partial nephrectomy using hinotori surgical robot system: single institutional prospective assessment of perioperative outcomes in 30 cases. J Endourol 37(5):531–534. https://doi.org/10.1089/end.2022.0775

    Article  PubMed  Google Scholar 

  27. Anonymous (n.d.) Symani system overview. https://www.mmimicro.com/symani-system-overview. Accessed 17 Aug 2023

  28. Barbon C, Grünherz L, Uyulmaz S et al (2022) Exploring the learning curve of a new robotic microsurgical system for microsurgery. JPRAS Open 34:126–133. https://doi.org/10.1016/j.jpra.2022.09.002

    Article  PubMed  PubMed Central  Google Scholar 

  29. Anonymous (n.d.) HugoTM RAS System | Medtronic (UK). https://www.medtronic.com/covidien/en-gb/robotic-assisted-surgery/hugo-ras-system.html. Accessed 4 April 2023

  30. ParkJun 22 A (2021) 11:35am. Meet hugo: medtronic’s robotic-assisted surgery system makes global debut in chilean clinic. https://www.fiercebiotech.com/medtech/meet-hugo-medtronic-s-robotic-assisted-surgery-system-makes-global-debut-chilean-clinic. Accessed 6 April 2023

  31. Anonymous (n.d.) Distalmotion. https://www.distalmotion.com/. Accessed 13 Aug 2023

  32. Thillou D, Robin H, Ricolleau C et al (2023) Robot-assisted radical prostatectomy with the Dexter robotic system: initial experience and insights into on-demand robotics. Eur Urol:S0302283823028804.https://doi.org/10.1016/j.eururo.2023.05.034

  33. Hotz AS, Breitenstein S, Kambakamba P et al (2023) Implementation of the Dexter robot system in daily practice—first experiences in gall bladder and hernia surgery. Br J Surg 110(Supplement_5):znad178.033. https://doi.org/10.1093/bjs/znad178.033

  34. Yi B, Wang G, Li J et al (2016) The first clinical use of domestically produced Chinese minimally invasive surgical robot system “Micro Hand S.” Surg Endosc 30(6):2649–2655. https://doi.org/10.1007/s00464-015-4506-1

    Article  PubMed  Google Scholar 

  35. Yao Y, Liu Y, Li Z et al (2020) Chinese surgical robot micro hand S: A consecutive case series in general surgery. Int J Surg 75:55–59. https://doi.org/10.1016/j.ijsu.2020.01.013

    Article  PubMed  Google Scholar 

  36. Zeng Y, Wang G, Li Z et al (2021) The micro hand S vs. da Vinci surgical robot-assisted surgery on total mesorectal excision: short-term outcomes using propensity score matching analysis. Front Surg 8:656270. https://doi.org/10.3389/fsurg.2021.656270

  37. Zheng J, Wang Y, Zhang J et al (2020) 5G ultra-remote robot-assisted laparoscopic surgery in China. Surg Endosc 34(11):5172–5180. https://doi.org/10.1007/s00464-020-07823-x

    Article  PubMed  Google Scholar 

  38. Wang Y, Qu M, Mei N et al (2021) A phase III randomized controlled study of a domestic endoscopic robot used in radical prostatectomy. Chin J Urol 2021:485–490

  39. Ren C, Sun D (2022) Robot-assisted single-port laparoscopic bilateral ovarian cystectomy using the Shurui® system: A case report. Intell Surg 3:9–13. https://doi.org/10.1016/j.isurg.2022.06.001

    Article  Google Scholar 

  40. Peng D, Jing T, Yao X et al (2023) Preliminary experience of partial nephrectomy through a new single-port surgical robot system. J Endourol 37(5):535–541. https://doi.org/10.1089/end.2022.0745

    Article  PubMed  Google Scholar 

  41. Madanpelle (2023) Made in India’ surgical robot SSI mantra completes 100 successful surgeries

  42. Fan S, Dai X, Yang K et al (2021) Robot-assisted pyeloplasty using a new robotic system, the KangDuo-Surgical Robot-01: a prospective, single-centre, single-arm clinical study. BJU Int 128(2):162–165. https://doi.org/10.1111/bju.15396

    Article  PubMed  Google Scholar 

  43. Li X, Xu W, Fan S et al (2023) Robot-assisted partial nephrectomy with the newly developed KangDuo surgical robot versus the da Vinci si surgical system: a double-center prospective randomized controlled noninferiority trial. Eur Urol Focus 9(1):133–140. https://doi.org/10.1016/j.euf.2022.07.008

    Article  CAS  PubMed  Google Scholar 

  44. Fan S, Zhang Z, Wang J et al (2022) Robot-assisted radical prostatectomy using the KangDuo surgical robot-01 system: a prospective, single-center. Single-Arm Clinical Study J Urol 208(1):119–127. https://doi.org/10.1097/JU.0000000000002498

    Article  PubMed  Google Scholar 

  45. Ho J (2023) Charged by surgical robot’s approval, Shenzhen edge medical makes new IPO Bid—bamboo works—where China stocks meet global investors. https://thebambooworks.com/charged-by-surgical-robots-approval-shenzhen-edge-medical-makes-new-ipo-bid/. Accessed 16 Aug 2023

  46. Innocenti B, Bori E (2021) Robotics in orthopaedic surgery: why, what and how? Arch Orthop Trauma Surg 141(12):2035–2042. https://doi.org/10.1007/s00402-021-04046-0

    Article  PubMed  Google Scholar 

  47. Anonymous (n.d.) Mako. https://www.stryker.com/us/en/portfolios/orthopaedics/joint-replacement/mako-robotic-arm-assisted-surgery.html. Accessed: 8 June 2023

  48. Roche M (2021) The MAKO robotic-arm knee arthroplasty system. Arch Orthop Trauma Surg 141(12):2043–2047. https://doi.org/10.1007/s00402-021-04208-0

    Article  PubMed  Google Scholar 

  49. Siddiqi A, Horan T, Molloy RM et al (2021) A clinical review of robotic navigation in total knee arthroplasty: historical systems to modern design. EFORT Open Rev 6(4):252–269. https://doi.org/10.1302/2058-5241.6.200071

    Article  PubMed  PubMed Central  Google Scholar 

  50. Vermue H, Batailler C, Monk P et al (2022) The evolution of robotic systems for total knee arthroplasty, each system must be assessed for its own value: a systematic review of clinical evidence and meta-analysis. Arch Orthop Trauma Surg 143(6):3369–3381. https://doi.org/10.1007/s00402-022-04632-w

    Article  PubMed  Google Scholar 

  51. Casper M, Mitra R, Khare R et al (2018) Accuracy assessment of a novel image-free handheld robot for Total Knee Arthroplasty in a cadaveric study. Comput Assist Surg 23(1):14–20. https://doi.org/10.1080/24699322.2018.1519038

    Article  Google Scholar 

  52. Miller BA, Salehi A, Limbrick DD et al (2017) Applications of a robotic stereotactic arm for pediatric epilepsy and neurooncology surgery. J Neurosurg Pediatr 20(4):364–370. https://doi.org/10.3171/2017.5.PEDS1782

    Article  PubMed  Google Scholar 

  53. Batailler C, Hannouche D, Benazzo F et al (2021) Concepts and techniques of a new robotically assisted technique for total knee arthroplasty: the ROSA knee system. Arch Orthop Trauma Surg 141(12):2049–2058. https://doi.org/10.1007/s00402-021-04048-y

    Article  PubMed  Google Scholar 

  54. Lefranc M, Peltier J (2016) Evaluation of the ROSA™ Spine robot for minimally invasive surgical procedures. Expert Rev Med Devices 13(10):899–906. https://doi.org/10.1080/17434440.2016.1236680

    Article  CAS  PubMed  Google Scholar 

  55. Rossi SMP, Sangaletti R, Perticarini L et al (2023) High accuracy of a new robotically assisted technique for total knee arthroplasty: an in vivo study. Knee Surg Sports Traumatol Arthrosc 31(3):1153–1161. https://doi.org/10.1007/s00167-021-06800-8

    Article  PubMed  Google Scholar 

  56. Anonymous (n.d.) VELYSTM Robotic-assisted solution | DePuy Synthes. https://www.jnjmedtech.com/en-US/products/digital-surgery/velys-robotic-assisted-solution. Accessed: 10 June 2023

  57. Doan GW, Courtis RP, Wyss JG et al (2022) Image-free robotic-assisted total knee arthroplasty improves implant alignment accuracy: a cadaveric study. J Arthroplasty 37(4):795–801. https://doi.org/10.1016/j.arth.2021.12.035

    Article  PubMed  Google Scholar 

  58. Xia R, Zhai Z, Zhang J et al (2021) Verification and clinical translation of a newly designed “Skywalker” robot for total knee arthroplasty: a prospective clinical study. J Orthop Transl 29:143–151. https://doi.org/10.1016/j.jot.2021.05.006

    Article  Google Scholar 

  59. Technology SR (2021) Honghu robot completes first 5G remote joint replacement surgery. https://www.surgicalroboticstechnology.com/news/honghu-surgical-robot-completes-first-5g-remote-joint-replacement-surgery/. Accessed 18 Aug 2023

  60. Kwoh YS, Hou J, Jonckheere EA et al (1988) A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed Eng 35(2):153–160. https://doi.org/10.1109/10.1354

    Article  CAS  PubMed  Google Scholar 

  61. Singh R, Wang K, Qureshi MB et al (2022) Robotics in neurosurgery: current prevalence and future directions. Surg Neurol Int 13:373. https://doi.org/10.25259/SNI_522_2022

    Article  PubMed  PubMed Central  Google Scholar 

  62. Anonymous (n.d.) ExcelsiusGPS® robotic navigation platform | Globus Medical. Available from: https://www.globusmedical.com/musculoskeletal-solutions/excelsiustechnology/excelsiusgps/. Accessed 11 June 2023

  63. Vo CD, Jiang B, Azad TD et al (2020) Robotic spine surgery: current state in minimally invasive surgery. Glob Spine J 10(2_suppl):34S–40S. https://doi.org/10.1177/2192568219878131

  64. Godzik J, Walker CT, Hartman C et al (2019) A Quantitative assessment of the accuracy and reliability of robotically guided percutaneous pedicle screw placement: technique and application accuracy. Oper Neurosurg 17(4):389–395. https://doi.org/10.1093/ons/opy413

    Article  Google Scholar 

  65. Dreval’ ON, Rynkov IP, Kasparova KA et al (2014) Results of using spine assist Mazor in surgical treatment of spine disorders. Zh Vopr Neirokhir Im N N Burdenko 78(3):14–20

  66. Khan A, Meyers JE, Siasios I et al (2019) Next-generation robotic spine surgery: first report on feasibility, safety, and learning curve. Oper Neurosurg 17(1):61–69. https://doi.org/10.1093/ons/opy280

    Article  Google Scholar 

  67. O’Connor TE, O’Hehir MM, Khan A et al (2021) Mazor X stealth robotic technology: a technical note. World Neurosurg 145:435–442. https://doi.org/10.1016/j.wneu.2020.10.010

    Article  PubMed  Google Scholar 

  68. Medtronic (n.d.) Spine & orthopaedic products—Mazor X Steath Edition. https://www.medtronic.com/us-en/healthcare-professionals/products/spinal-orthopaedic/spine-robotics/mazor-x-stealth-edition.html. Accessed 9 July 2023

  69. Püschel A, Schafmayer C, Groß J (2022) Robot-assisted techniques in vascular and endovascular surgery. Langenbecks Arch Surg 407(5):1789–1795. https://doi.org/10.1007/s00423-022-02465-0

    Article  PubMed  PubMed Central  Google Scholar 

  70. Andreassi MG, Piccaluga E, Guagliumi G et al (2016) Occupational health risks in cardiac catheterization laboratory workers. Circ Cardiovasc Interv 9(4):e003273. https://doi.org/10.1161/CIRCINTERVENTIONS.115.003273

    Article  PubMed  Google Scholar 

  71. Weisz G, Metzger DC, Caputo RP et al (2013) Safety and feasibility of robotic percutaneous coronary intervention. J Am Coll Cardiol 61(15):1596–1600. https://doi.org/10.1016/j.jacc.2012.12.045

    Article  PubMed  Google Scholar 

  72. Mahmud E, Naghi J, Ang L et al (2017) Demonstration of the safety and feasibility of robotically assisted percutaneous coronary intervention in complex coronary lesions. JACC Cardiovasc Interv 10(13):1320–1327. https://doi.org/10.1016/j.jcin.2017.03.050

    Article  PubMed  Google Scholar 

  73. Legeza P, Britz GW, Loh T et al (2020) Current utilization and future directions of robotic-assisted endovascular surgery. Expert Rev Med Devices 17(9):919–927. https://doi.org/10.1080/17434440.2020.1814742

    Article  CAS  PubMed  Google Scholar 

  74. Smitson CC, Ang L, Pourdjabbar A et al (2018) Safety and feasibility of a novel, second-generation robotic-assisted system for percutaneous coronary intervention: first-in-human report. J Invasive Cardiol 30(4):152–156

    PubMed  Google Scholar 

  75. Saglam R, Muslumanoglu AY, Tokatlı Z et al (2014) A new robot for flexible ureteroscopy: development and early clinical results (IDEAL stage 1–2b). Eur Urol 66(6):1092–1100. https://doi.org/10.1016/j.eururo.2014.06.047

    Article  PubMed  Google Scholar 

  76. Rassweiler J, Fiedler M, Charalampogiannis N et al (2018) Robot-assisted flexible ureteroscopy: an update. Urolithiasis 46(1):69–77. https://doi.org/10.1007/s00240-017-1024-8

    Article  PubMed  Google Scholar 

  77. Geavlete P, Saglam R, Georgescu D et al (2016) Robotic flexible ureteroscopy versus classic flexible ureteroscopy in renal stones: the initial romanian experience. Chir Buchar Rom 1990 111(4):326–329

  78. Schuler PJ, Duvvuri U, Friedrich DT et al (2015) First use of a computer-assisted operator-controlled flexible endoscope for transoral surgery: flexible oropharyngeal surgery. Laryngoscope 125(3):645–648. https://doi.org/10.1002/lary.24957

    Article  PubMed  Google Scholar 

  79. Mattheis S, Hasskamp P, Holtmann L et al (2017) Flex robotic system in transoral robotic surgery: the first 40 patients. Head Neck 39(3):471–475. https://doi.org/10.1002/hed.24611

    Article  PubMed  Google Scholar 

  80. Funk E, Goldenberg D, Goyal N (2017) Demonstration of transoral robotic supraglottic laryngectomy and total laryngectomy in cadaveric specimens using the Medrobotics Flex System: Flex robotic laryngectomy. Head Neck 39(6):1218–1225. https://doi.org/10.1002/hed.24746

    Article  PubMed  Google Scholar 

  81. Johnson PJ, Serrano CMR, Castro M et al (2013) Demonstration of transoral surgery in cadaveric specimens with the medrobotics flex system. Laryngoscope 123(5):1168–1172. https://doi.org/10.1002/lary.23512

    Article  PubMed  Google Scholar 

  82. Groth S, Rex DK, Rösch T et al (2011) High cecal intubation rates with a new computer-assisted colonoscope: a feasibility study. Am J Gastroenterol 106(6):1075–1080. https://doi.org/10.1038/ajg.2011.52

    Article  PubMed  PubMed Central  Google Scholar 

  83. Yeung C, Cheung JL, Sreedhar B (2019) Emerging next-generation robotic colonoscopy systems towards painless colonoscopy. J Dig Dis 20(4):196–205. https://doi.org/10.1111/1751-2980.12718

    Article  PubMed  PubMed Central  Google Scholar 

  84. Kurniawan N, Keuchel M (2017) Flexible gastro-intestinal endoscopy—clinical challenges and technical achievements. Comput Struct Biotechnol J 15:168–179. https://doi.org/10.1016/j.csbj.2017.01.004

    Article  PubMed  PubMed Central  Google Scholar 

  85. Anonymous (n.d.) MONARCHTM bronchoscopy | Ethicon. https://www.jnjmedtech.com/en-US/product/monarch-bronchoscopy. Accessed 10 July 2023

  86. Lu M, Nath S, Semaan RW (2021) A review of robotic-assisted bronchoscopy platforms in the sampling of peripheral pulmonary lesions. J Clin Med 10(23):5678. https://doi.org/10.3390/jcm10235678

    Article  PubMed  PubMed Central  Google Scholar 

  87. Chen AC, Gillespie CT (2018) Robotic endoscopic airway challenge: REACH assessment. Ann Thorac Surg 106(1):293–297. https://doi.org/10.1016/j.athoracsur.2018.01.051

    Article  PubMed  Google Scholar 

  88. Reisenauer J, Simoff MJ, Pritchett MA et al (2022) Ion: technology and techniques for shape-sensing robotic-assisted bronchoscopy. Ann Thorac Surg 113(1):308–315. https://doi.org/10.1016/j.athoracsur.2021.06.086

    Article  PubMed  Google Scholar 

  89. Anonymous (n.d.) Ion platform | robotic-assisted bronchoscopy | Intuitive. https://www.intuitive.com/en-us/products-and-services/ion. Accessed 18 Aug 2023

  90. Lowenstein L, Matanes E, Weiner Z et al (2020) Robotic transvaginal natural orifice transluminal endoscopic surgery for bilateral salpingo oophorectomy. Eur J Obstet Gynecol Reprod Biol X 7:100113. https://doi.org/10.1016/j.eurox.2020.100113

    Article  PubMed  PubMed Central  Google Scholar 

  91. Kaštelan Ž, Knežević N, Hudolin T et al (2019) Extraperitoneal radical prostatectomy with the Senhance Surgical System robotic platform. Croat Med J 60(6):556–559. https://doi.org/10.3325/cmj.2019.60.556

    Article  PubMed  PubMed Central  Google Scholar 

  92. Stark M, Pomati S, D’Ambrosio A et al (2015) A new telesurgical platform—preliminary clinical results. Minim Invasive Ther Allied Technol 24(1):31–36. https://doi.org/10.3109/13645706.2014.1003945

    Article  PubMed  Google Scholar 

  93. Peters BS, Armijo PR, Krause C et al (2018) Review of emerging surgical robotic technology. Surg Endosc 32(4):1636–1655. https://doi.org/10.1007/s00464-018-6079-2

    Article  PubMed  Google Scholar 

  94. Jeong IG, Khandwala YS, Kim JH et al (2017) Association of robotic-assisted vs laparoscopic radical nephrectomy with perioperative outcomes and health care costs, 2003 to 2015. JAMA 318(16):1561. https://doi.org/10.1001/jama.2017.14586

    Article  PubMed  PubMed Central  Google Scholar 

  95. Kayani B, Konan S, Ayuob A et al (2019) Robotic technology in total knee arthroplasty: a systematic review. EFORT Open Rev 4(10):611–617. https://doi.org/10.1302/2058-5241.4.190022

    Article  PubMed  PubMed Central  Google Scholar 

  96. Karachalios Th, Varitimidis S, Bargiotas K et al (2016) An 11- to 15-year clinical outcome study of the Advance Medial Pivot total knee arthroplasty: pivot knee arthroplasty. Bone Jt J 98–B(8):1050–1055. https://doi.org/10.1302/0301-620X.98B8.36208.

  97. Hampp E, Chughtai M, Scholl L et al (2019) Robotic-arm assisted total knee arthroplasty demonstrated greater accuracy and precision to plan compared with manual techniques. J Knee Surg 32(03):239–250. https://doi.org/10.1055/s-0038-1641729

    Article  PubMed  Google Scholar 

  98. Sodhi N, Khlopas A, Piuzzi N et al (2018) The learning curve associated with robotic total knee arthroplasty. J Knee Surg 31(01):017–021. https://doi.org/10.1055/s-0037-1608809

    Article  Google Scholar 

  99. Joseph JR, Smith BW, Liu X et al (2017) Current applications of robotics in spine surgery: a systematic review of the literature. Neurosurg Focus 42(5):E2. https://doi.org/10.3171/2017.2.FOCUS16544

    Article  PubMed  Google Scholar 

  100. Ghasem A, Sharma A, Greif DN et al (2018) The arrival of robotics in spine surgery: a review of the literature. Spine 43(23):1670–1677. https://doi.org/10.1097/BRS.0000000000002695

    Article  PubMed  Google Scholar 

  101. Jiang B, Karim Ahmed A, Zygourakis CC et al (2018) Pedicle screw accuracy assessment in ExcelsiusGPS® robotic spine surgery: evaluation of deviation from pre-planned trajectory. Chin Neurosurg J 4(1):23. https://doi.org/10.1186/s41016-018-0131-x

    Article  PubMed  PubMed Central  Google Scholar 

  102. Roser F, Tatagiba M, Maier G (2013) Spinal robotics: current applications and future perspectives. Neurosurgery 72(Supplement 1):A12–A18. https://doi.org/10.1227/NEU.0b013e318270d02c

    Article  Google Scholar 

  103. Lonjon N, Chan-Seng E, Costalat V et al (2016) Robot-assisted spine surgery: feasibility study through a prospective case-matched analysis. Eur Spine J 25(3):947–955. https://doi.org/10.1007/s00586-015-3758-8

    Article  PubMed  Google Scholar 

  104. Menger RP, Savardekar AR, Farokhi F et al (2018) A cost-effectiveness analysis of the integration of robotic spine technology in spine surgery. Neurospine 15(3):216–224. https://doi.org/10.14245/ns.1836082.041

    Article  PubMed  PubMed Central  Google Scholar 

  105. Olivas-Alanis LH, Calzada-Briseño RA, Segura-Ibarra V et al (2020) LAPKaans: tool-motion tracking and gripping force-sensing modular smart laparoscopic training system. Sensors 20(23):6937. https://doi.org/10.3390/s20236937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kume K (2016) Flexible robotic endoscopy: current and original devices. Comput Assist Surg 21(1):150–159. https://doi.org/10.1080/24699322.2016.1242654

    Article  Google Scholar 

  107. Larcher A, Turri F, Bianchi L et al (2019) Virtual reality validation of the ERUS simulation-based training programmes: results from a high-volume training centre for robot-assisted surgery. Eur Urol 75(5):885–887. https://doi.org/10.1016/j.eururo.2019.02.008

    Article  PubMed  Google Scholar 

  108. Bravi CA, Dell’Oglio P, Mazzone E et al (2023) The surgical learning curve for biochemical recurrence after robot-assisted radical prostatectomy. Eur Urol Oncol 6(4):414–421. https://doi.org/10.1016/j.euo.2022.06.010

    Article  PubMed  Google Scholar 

  109. Bhandari M, Zeffiro T, Reddiboina M (2020) Artificial intelligence and robotic surgery: current perspective and future directions. Curr Opin Urol 30(1):48–54. https://doi.org/10.1097/MOU.0000000000000692

    Article  PubMed  Google Scholar 

  110. Robinson PG, Clement ND, Hamilton D et al (2019) A systematic review of robotic-assisted unicompartmental knee arthroplasty: prosthesis design and type should be reported. Bone Jt J 101–B(7):838–847. https://doi.org/10.1302/0301-620X.101B7.BJJ-2018-1317.R1.

  111. Alexander R, Schwartz C, Ladisich B et al (2018) CyberKnife radiosurgery in recurrent brain metastases: do the benefits outweigh the risks? Cureus. https://doi.org/10.7759/cureus.3741

    Article  PubMed  PubMed Central  Google Scholar 

  112. Marescaux J, Leroy J, Rubino F et al (2002) Transcontinental robot-assisted remote telesurgery: feasibility and potential applications. Ann Surg 235(4):487–492. https://doi.org/10.1097/00000658-200204000-00005

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AG, MCM—Conceived the study idea, designed the research, and conducted the initial literature search. RP, SS and EP—Engaged in review of literature, extracted data, and developed figures and tables. AG, ARJ, SS and CH—writing and original draft preparation. AG, TR and SS—Participated in critical revisions, editing, and proofreading of the manuscript. MWR, RJL, DA and VP—Provided mentorship, project supervision, manuscript revision and final approval. All authors have reviewed and approved the final version of this manuscript and are accountable for its accuracy and integrity.

Corresponding author

Correspondence to Ahmed Gamal.

Ethics declarations

Conflict of interest

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript. The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gamal, A., Moschovas, M.C., Jaber, A.R. et al. Clinical applications of robotic surgery platforms: a comprehensive review. J Robotic Surg 18, 29 (2024). https://doi.org/10.1007/s11701-023-01815-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11701-023-01815-4

Keywords

Navigation