Skip to main content

Advertisement

Log in

Advancements in robotic surgery: innovations, challenges and future prospects

  • Review
  • Published:
Journal of Robotic Surgery Aims and scope Submit manuscript

Abstract

The use of robots has revolutionized healthcare, wherein further innovations have led to improved precision and accuracy. Conceived in the late 1960s, robot-assisted surgeries have evolved to become an integral part of various surgical specialties. Modern robotic surgical systems are equipped with highly dexterous arms and miniaturized instruments that reduce tremors and enable delicate maneuvers. Implementation of advanced materials and designs along with the integration of imaging and visualization technologies have enhanced surgical accuracy and made robots safer and more adaptable to various procedures. Further, the haptic feedback system allows surgeons to determine the consistency of the tissues they are operating upon, without physical contact, thereby preventing injuries due to the application of excess force. With the implementation of teleoperation, surgeons can now overcome geographical limitations and provide specialized healthcare remotely. The use of artificial intelligence (AI) and machine learning (ML) aids in surgical decision-making by improving the recognition of minute and complex anatomical structures. All these advancements have led to faster recovery and fewer complications in patients. However, the substantial cost of robotic systems, their maintenance, the size of the systems and proper surgeon training pose major challenges. Nevertheless, with future advancements such as AI-driven automation, nanorobots, microscopic incision surgeries, semi-automated telerobotic systems, and the impact of 5G connectivity on remote surgery, the growth curve of robotic surgery points to innovation and stands as a testament to the persistent pursuit of progress in healthcare.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data pertaining to this review is included in the article.

References

  1. Mehta A, Cheng Ng J, Andrew Awuah W, Huang H, Kalmanovich J, Agrawal A, Abdul-Rahman T, Hasan MM, Sikora V, Isik A (2022) Embracing robotic surgery in low- and middle-income countries: potential benefits, challenges, and scope in the future. Ann Med Surg (Lond) 84:104803. https://doi.org/10.1016/j.amsu.2022.104803

    Article  PubMed  Google Scholar 

  2. George EI, Brand TC, LaPorta A, Marescaux J, Satava RM (2018) Origins of Robotic Surgery: From Skepticism to Standard of Care. JSLS 22(4):e2018.00039. https://doi.org/10.4293/JSLS.2018.00039

    Article  PubMed  PubMed Central  Google Scholar 

  3. Davies B (2000) A review of robotics in surgery. Proc Inst Mech Eng H 214(1):129–140. https://doi.org/10.1243/0954411001535309

    Article  CAS  PubMed  Google Scholar 

  4. Paul HA, Bargar WL, Mittlestadt B, Musits B, Taylor RH, Kazanzides P, Zuhars J, Williamson B, Hanson W (1992) Development of a surgical robot for cementless total hip arthroplasty. Clin Orthop Relat Res 285:57–66

    Article  Google Scholar 

  5. Harris S, Arambula-Cosio F, Mei Q et al (1997) The Probot—an active robot for prostate resection. Proceedings of the Institution of Mechanical Engineers, Part H. N Engl J Med 211:317–325. https://doi.org/10.1243/0954411971534449

    Article  CAS  Google Scholar 

  6. Satava RM (2002) Surgical robotics: the early chronicles: a personal historical perspective. Surg Laparosc Endosc Percutan Tech 12(1):6–16. https://doi.org/10.1097/00129689-200202000-00002

    Article  PubMed  Google Scholar 

  7. Lanfranco AR, Castellanos AE, Desai JP, Meyers WC (2004) Robotic surgery: a current perspective. Ann Surg 239(1):14–21. https://doi.org/10.1097/01.sla.0000103020.19595.7d

    Article  PubMed  PubMed Central  Google Scholar 

  8. Dwivedi J, Mahgoub I (2012) Robotic surgery—a review on recent advances in surgical robotic systems

  9. Lafaro KJ, Stewart C, Fong A, Fong Y (2020) Robotic liver resection. Surg Clin North Am 100(2):265–281. https://doi.org/10.1016/j.suc.2019.11.003

    Article  PubMed  Google Scholar 

  10. Díaz CE, Fernández R, Armada M, García Gutiérrez FdJ (2015) State of the art in robots used in minimally invasive surgeries. Natural orifice transluminal surgery (NOTES) as a particular case. Ind Robot 42(6):508–532. https://doi.org/10.1108/IR-03-2015-0055

    Article  Google Scholar 

  11. Díaz CE, Fernández R, Armada M, García F (2017) A research review on clinical needs, technical requirements, and normativity in the design of surgical robots. Int J Med Rob Comp Ass Surg. https://doi.org/10.1002/rcs.1801

    Article  Google Scholar 

  12. Cepolina F, Razzoli RP (2022) An introductory review of robotically assisted surgical systems. Int J Med Robot. https://doi.org/10.1002/rcs.2409

    Article  PubMed  PubMed Central  Google Scholar 

  13. Runciman M, Darzi A, Mylonas GP (2019) Soft robotics in minimally invasive surgery. Soft Robot 6(4):423–443. https://doi.org/10.1089/soro.2018.0136

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kim J, de Mathelin M, Ikuta K, Kwon DS (2022) Advancement of flexible robot technologies for endoluminal surgeries. Proc IEEE 110(7):909–931. https://doi.org/10.1109/JPROC.2022.3170109

    Article  Google Scholar 

  15. Li Z, Wang L, Wu L, Alambeigi F, Cheng SS (2022) Editorial: flexible surgical robotics: design, modeling, sensing and control. Front Robot AI. https://doi.org/10.3389/frobt.2022.854024

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhang L, Yuan Q, Xu Y, Wang W (2020) Comparative clinical outcomes of robot-assisted liver resection versus laparoscopic liver resection: a meta-analysis. PLoS ONE 15(10):10. https://doi.org/10.1371/journal.pone.0240593

    Article  CAS  Google Scholar 

  17. Qian L, Wu JY, DiMaio SP, Navab N, Kazanzides P (2020) a review of augmented reality in robotic-assisted surgery. IEEE Trans Med Robot Bionics 2(1):1–16. https://doi.org/10.1109/TMRB.2019.2957061

    Article  Google Scholar 

  18. Sastry SS, Cohn M, Tendick F (1997) Milli-robotics for remote, minimally invasive surgery. Robot Auton Syst 21(3):305–316. https://doi.org/10.1016/s0921-8890(96)00082-6

    Article  Google Scholar 

  19. Patel RV, Atashzar SF, Tavakoli M (2022) Haptic Feedback And Force-Based Teleoperation In Surgical Robotics. Proc IEEE 110(7):1012–1027. https://doi.org/10.1109/JPROC.2022.3180052

    Article  Google Scholar 

  20. Raison N, Khan MS, Challacombe B (2015) Telemedicine in surgery: what are the opportunities and hurdles to realising the potential? Curr Urol Rep 16(7):43. https://doi.org/10.1007/s11934-015-0522-x

    Article  PubMed  Google Scholar 

  21. Mohan A, Wara UU, Arshad Shaikh MT, Rahman RM, Zaidi ZA (2021) Telesurgery and robotics: an improved and efficient era. Cureus 13(3):e14124. https://doi.org/10.7759/cureus.14124

    Article  PubMed  PubMed Central  Google Scholar 

  22. Reichenbach M, Frederick T, Cubrich L, Bircher W, Bills N, Morien M et al (2017) Telesurgery with miniature robots to leverage surgical expertise in distributed expeditionary environments. Mil Med 182(1):316–321. https://doi.org/10.7205/MILMED-D-16-00176

    Article  PubMed  Google Scholar 

  23. Hashimoto DA, Rosman G, Rus D, Meireles OR (2018) Artificial intelligence in surgery: promises and perils. Ann Surg 268(1):70–76. https://doi.org/10.1097/SLA.0000000000002693

    Article  PubMed  Google Scholar 

  24. Deo RC (2015) Machine Learning in Medicine. Circulation 132(20):1920–1930. https://doi.org/10.1161/CIRCULATIONAHA.115.001593

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sutton RS, Barto AG (1998) The reinforcement learning problem. Reinforcement learning: an introduction. MIT Press, Cambridge, pp 51–85

    Google Scholar 

  26. Bothe MK, Dickens L, Reichel K, Tellmann A, Ellger B, Westphal M et al (2013) The use of reinforcement learning algorithms to meet the challenges of an artificial pancreas. Expert Rev Med Devices 10(5):661–673

    Article  CAS  PubMed  Google Scholar 

  27. DiPietro R, Lea C, Malpani A, Ahmidi N, Vedula S, Lee GI, et al (2016) Recognizing surgical activities with recurrent neural networks. In: International Conference on medical image computing and computer-assisted intervention, pp 551–558. https://doi.org/10.1007/978-3-319-46720-7_64.

  28. Zappella L, Béjar B, Hager G, Vidal R (2013) Surgical gesture classification from video and kinematic data. Med Image Anal 17(7):732–745. https://doi.org/10.1016/j.media.2013.04.007

    Article  PubMed  Google Scholar 

  29. Moustris GP, Hiridis SC, Deliparaschos KM, Konstantinidis KM (2011) Evolution of autonomous and semi-autonomous robotic surgical systems: a review of the literature. Int J Med Robot 7(4):375–392. https://doi.org/10.1002/rcs.408

    Article  CAS  PubMed  Google Scholar 

  30. Shademan A, Decker RS, Opfermann JD, Leonard S, Krieger A, Kim PCW (2016) Supervised autonomous robotic soft tissue surgery. Sci Transl Med 8(337):337. https://doi.org/10.1126/scitranslmed.aad9398

    Article  Google Scholar 

  31. Oliveira CM, Nguyen HT, Ferraz AR, Watters K, Rosman B, Rahbar R (2012) Robotic surgery in otolaryngology and head and neck surgery: a review. Minim Invasive Surg. https://doi.org/10.1155/2012/286563

    Article  PubMed  PubMed Central  Google Scholar 

  32. Weinstein GS, O’Malley BW, Snyder W, Sherman E, Quon H (2007) Transoral robotic surgery: radical tonsillectomy. Arch Otolaryngol Head Neck Surg 133(12):1220–1226. https://doi.org/10.1001/archotol.133.12.1220

    Article  PubMed  Google Scholar 

  33. Dziegielewski PT, Teknos TN, Durmus K, Old M, Agrawal A, Kakarala K et al (2013) Transoral robotic surgery for oropharyngeal cancer: long-term quality of life and functional outcomes. JAMA Otolaryngol Head Neck Surg 10:1–9. https://doi.org/10.1001/jamaoto.2013.2747

    Article  Google Scholar 

  34. Lee SY, Park YM, Byeon HK, Choi EC, Kim SH (2014) Comparison of oncologic and functional outcomes after transoral robotic lateral oropharyngectomy versus conventional surgery for T1 to T3 tonsillar cancer. Head Neck 36(8):1138–1145. https://doi.org/10.1002/hed.23424

    Article  PubMed  Google Scholar 

  35. Lawson G, Matar N, Remacle M, Jamart J, Bachy V (2011) Transoral robotic surgery for the management of head and neck tumors: learning curve 268(12):1795–1801. https://doi.org/10.1007/s00405-011-1537-7

    Article  Google Scholar 

  36. Kang SW, Jeong JJ, Yun JS, Sung TY, Lee SC, Lee YS et al (2009) Robot-assisted endoscopic surgery for thyroid cancer: experience with the first 100 patients. Surg Endosc 23(11):2399–2406. https://doi.org/10.1007/s00464-009-0366-x

    Article  PubMed  Google Scholar 

  37. Lee J, Nah KY, Kim RM, Ahn YH, Soh EY, Chung WY (2010) Differences in postoperative outcomes, function, and cosmesis: open versus robotic thyroidectomy. Surg Endosc 24(12):3186–3194. https://doi.org/10.1007/s00464-010-1113-z

    Article  PubMed  Google Scholar 

  38. Qureshi YA, Mohammadi B (2018) Robotic oesophago-gastric cancer surgery. Ann R Coll Surg Engl 100(6_sup):23–30. https://doi.org/10.1308/rcsann.supp1.23

    Article  Google Scholar 

  39. Singh R, Wang K, Qureshi MB, Rangel IC, Brown NJ, Shahrestani S et al (2022) Robotics in neurosurgery: Current prevalence and future directions. Surg Neurol Int 13:373. https://doi.org/10.25259/SNI_522_2022

    Article  PubMed  PubMed Central  Google Scholar 

  40. Shah J, Vyas A, Vyas D (2014) The history of robotics in surgical specialties. Am J Robot Surg 1(1):12–20. https://doi.org/10.1166/ajrs.2014.1006

    Article  PubMed  PubMed Central  Google Scholar 

  41. Cadiere GB, Himpens J, Vertruyen M, Favretti F (1999) The world’s first obesity surgery performed by a surgeon at a distance. Obes Surg 9(2):206–209. https://doi.org/10.1381/096089299765553539

    Article  CAS  PubMed  Google Scholar 

  42. Hanly EJ, Talamini MA (2004) Robotic abdominal surgery. Am J Surg 188(4A Suppl):19–26. https://doi.org/10.1016/j.amjsurg.2004.08.020

    Article  Google Scholar 

  43. Coratti A, Annecchiarico M, Di Marino M, Gentile E, Coratti F, Giulianotti PC (2013) Robot-assisted gastrectomy for gastric cancer: current status and technical considerations. World J Surg 37(12):2771–2781. https://doi.org/10.1007/s00268-013-2100-z

    Article  PubMed  Google Scholar 

  44. Diaz-Arrastia C, Jurnalov C, Gomez G, Townsend C (2002) Laparoscopic hysterectomy using a computer-enhanced surgical robot. Surg Endosc Other Interv Tech 16(9):1271–1273. https://doi.org/10.1007/s00464-002-8523-5

    Article  CAS  Google Scholar 

  45. Advincula AP, Song A, Burke W, Reynolds RK (2004) Preliminary experience with robot-assisted laparoscopic myomectomy. J Am Assoc Gynecol Laparosc 11(4):511–518. https://doi.org/10.1016/s1074-3804(05)60085-0

    Article  PubMed  Google Scholar 

  46. Barakat EE, Bedaiwy MA, Zimberg S, Nutter B, Nosseir M, Falcone T (2011) Robotic-assisted, laparoscopic, and abdominal myomectomy: a comparison of surgical outcomes. Obstet Gynecol 117:256–265. https://doi.org/10.1097/AOG.0b013e318207854f

    Article  PubMed  Google Scholar 

  47. Lonnerfors C, Persson J (2009) Robot-assisted laparoscopic myomectomy; a feasible technique for removal of unfavorably localized myomas. Acta Obstet Gynecol Scand 88:994–999. https://doi.org/10.1080/00016340903118026

    Article  PubMed  Google Scholar 

  48. Visco AG, Advincula AP (2008) Robotic gynecologic surgery. Obstet Gynecol 112:1369–1384. https://doi.org/10.1097/AOG.0b013e31818f3c17

    Article  PubMed  Google Scholar 

  49. Ramavath KK, Murthy PS (2011) Robotic sacrocolpopexy: An observational experience at mayoclinic, USA. J Gynecol Endosc Surg 2:53–57. https://doi.org/10.4103/0974-1216.85285

    Article  PubMed  PubMed Central  Google Scholar 

  50. Akl MN, Long JB, Giles DL, Cornella JL, Pettit PD, Chen AH et al (2009) Robotic-assisted sacrocolpopexy: Technique and learning curve. Surg Endosc 23:2390–2394. https://doi.org/10.1007/s00464-008-0311-4

    Article  PubMed  Google Scholar 

  51. Rodgers AK, Goldberg JM, Hammel JP, Falcone T (2007) Tubal anastomosis by robotic compared with outpatient minilaparotomy. Obstet Gynecol 109:1375–1380. https://doi.org/10.1097/01.AOG.0000264591.43544.0f

    Article  PubMed  Google Scholar 

  52. Göçmen A, Sanlýkan F (2013) Two live births following robotic-assisted abdominal cerclage in nonpregnant women. Case Rep Obstet Gynecol 2013:256972. https://doi.org/10.1155/2013/256972

    Article  PubMed  PubMed Central  Google Scholar 

  53. Schimpf MO, Morgenstern JH, Tulikangas PK, Wagner JR (2007) Vesicovaginal fistula repair without intentional cystostomy using the laparoscopic robotic approach: a case report. JSLS 11:378–380

    PubMed  PubMed Central  Google Scholar 

  54. Pietersma CS, Schreuder HW, Kooistra A, Koops SE (2014) Robotic-assisted laparoscopic repair of a vesicovaginal fistula: A time-consuming novelty or an effective tool? BMJ Case Rep. https://doi.org/10.1136/bcr-2014-204119

    Article  PubMed  PubMed Central  Google Scholar 

  55. Draaisma WA, Nieuwenhuis DH, Janssen LW, Broeders IA (2008) Robot-assisted laparoscopic rectovaginopexy for rectal prolapse: A prospective cohort study on feasibility and safety. J Robotic Surg 1:273–277. https://doi.org/10.1007/s11701-007-0053-7

    Article  Google Scholar 

  56. Francis SL, Agrawal A, Azadi A, Ostergard DR, Deveneau NE (2015) Robotic Burch colposuspension: a surgical case and instructional video. Int Urogynecol J 26(1):147–148. https://doi.org/10.1007/s00192-014-2471-1

    Article  PubMed  Google Scholar 

  57. Harky A, Hussain SMA (2019) Robotic cardiac surgery: the future gold standard or an unnecessary extravagance? Braz J Cardiovasc Surg 34(4):XII–XIII. https://doi.org/10.21470/1678-9741-2019-0194

    Article  PubMed  PubMed Central  Google Scholar 

  58. Onnasch JF, Schneider F, Falk V, Mierzwa M, Bucerius J, Mohr FW (2002) Five years of less invasive mitral valve surgery: from experimental to routine approach. Heart Surg Forum 5(2):132–135

    PubMed  Google Scholar 

  59. Cosgrove DM 3rd, Sabik JF, Navia JL (1998) Minimally invasive valve operations. Ann Thorac Surg 65(6):1535–1539. https://doi.org/10.1016/s0003-4975(98)00300-2

    Article  PubMed  Google Scholar 

  60. Navia JL, Cosgrove DM 3rd (1996) Minimally invasive mitral valve operations. Ann Thorac Surg 62(5):1542–1544. https://doi.org/10.1016/0003-4975(96)00779-5

    Article  CAS  PubMed  Google Scholar 

  61. Mihaljevic T, Jarrett CM, Gillinov AM, Williams SJ, DeVilliers PA, Stewart WJ et al (2011) Robotic repair of posterior mitral valve prolapse versus conventional approaches: potential realized. J Thorac Cardiovasc Surg 141(1):72–80. https://doi.org/10.1016/j.jtcvs.2010.09.008

    Article  PubMed  Google Scholar 

  62. Xiao C, Gao C, Yang M, Wang G, Wu Y, Wang J et al (2014) Totally robotic atrial septal defect closure: 7-year single institution experience and follow-up. Interact Cardiovasc Thorac Surg 19(6):933–937. https://doi.org/10.1093/icvts/ivu263

    Article  PubMed  Google Scholar 

  63. Li S, Gao Ch (2017) Surgical Experience of Primary Cardiac Tumor: Single-Institution 23-Year Report. Med Sci Monit 23:2111–2117. https://doi.org/10.12659/MSM.903324

    Article  PubMed  PubMed Central  Google Scholar 

  64. Amraoui S, Labrousse L, Sohal M, Jansens JL, Berte B, Derval N et al (2017) Alternative to left ventricular lead implantation through the coronary sinus: 1-year experience with a minimally invasive and robotically guided approach. Europace 19(1):88–95. https://doi.org/10.1093/europace/euv430

    Article  PubMed  Google Scholar 

  65. Digioia AM (2002) Comparison of a mechanical acetabular alignment guide with computer placement of the socket. J Arthroplasty 17(3):359–364. https://doi.org/10.1054/arth.2002.30411

    Article  PubMed  Google Scholar 

  66. Khlopas A, Chughtai M, Hampp EL, Scholl LY, Prieto M, Chang TC et al (2017) Robotic-arm assisted total knee arthroplasty demonstrated soft tissue protection. Surg Technol Int 30:441–446

    PubMed  Google Scholar 

  67. Solomiichuk V, Fleischhammer J, Molliqaj G, Warda J, Alaid A, von Eckardstein K et al (2017) Robotic vs fluoroscopy-guided pedicle screw insertion for metastatic spinal disease: a matched-cohort comparison. Neurosurg Focus 42(5):E13. https://doi.org/10.3171/2017.3.FOCUS1710

    Article  PubMed  Google Scholar 

  68. Schröder ML, Staartjes VE (2017) Revisions for screw malposition and clinical outcomes after robot-guided lumbar fusion for spondylolisthesis. Neurosurg Focus 42(5):E12. https://doi.org/10.3171/2017.3.FOCUS16534

    Article  PubMed  Google Scholar 

  69. Bozkurt M, Apaydin N, Işik C, Bilgetekin YG, Acar HI, Elhan A (2011) Robotic arthroscopic surgery: a new challenge in arthroscopic surgery Part-I: robotic shoulder arthroscopy; a cadaveric feasibility study. Int J Med Robot 7(4):496–500. https://doi.org/10.1002/rcs.436

    Article  PubMed  Google Scholar 

  70. Dagnino G, Georgilas I, Kohler P, Morad S, Atkins R, Dogramadzi S (2016) Navigation system for robot-assisted intraarticular lower-limb fracture surgery. Int J CARS 11:1831–1843. https://doi.org/10.1007/s11548-016-1418-z

    Article  Google Scholar 

  71. Oszwald M, Westphal R, Klepzig D, Khalafi A, Gaulke R, Müller CW et al (2010) Robotized access to the medullary cavity for intramedullary nailing of the femur. Technol Health Care 18(3):173–180. https://doi.org/10.3233/THC-2010-0580

    Article  PubMed  Google Scholar 

  72. Lei H, Sheng L, Manyi W, Junqiang W, Wenyong L (2010) A biplanar robot navigation system for the distal locking of intramedullary nails. Int J Med Robot 6(1):61–65. https://doi.org/10.1002/rcs.289

    Article  PubMed  Google Scholar 

  73. Mantovani G, Liverneaux P, Garcia JC Jr, Berner SH, Bednar MS, Mohr CJ (2011) Endoscopic exploration and repair of brachial plexus with telerobotic manipulation: a cadaver trial. J Neurosurg 115(3):659–664. https://doi.org/10.3171/2011.3.JNS10931

    Article  PubMed  Google Scholar 

  74. Garcia JC Jr, Lebailly F, Mantovani G, Mendonca LA, Garcia J, Liverneaux P (2012) Telerobotic manipulation of the brachial plexus. J Reconstr Microsurg 28(7):491–494. https://doi.org/10.1055/s-0032-1313761

    Article  PubMed  Google Scholar 

  75. Yu HY, Hevelone ND, Lipsitz SR, Kowalczyk KJ, Hu JC (2012) Use, costs and comparative effectiveness of robotic assisted, laparoscopic and open urological surgery. J Urol 187(4):1392–1398. https://doi.org/10.1016/j.juro.2011.11.089

    Article  PubMed  Google Scholar 

  76. Rassweiler J, Rassweiler MC, Kenngott H, Frede T, Michel MS, Alken P et al (2013) The past, present and future of minimally invasive therapy in urology: a review and speculative outlook. Minim Invasive Ther Allied Technol 22(4):200–209. https://doi.org/10.3109/13645706.2013.816323

    Article  PubMed  Google Scholar 

  77. Uberoi J, Disick GI, Munver R (2009) Minimally invasive surgical management of pelvic-ureteric junction obstruction: update on the current status of robotic-assisted pyeloplasty. BJU Int 104(11):1722–1729. https://doi.org/10.1111/j.1464-410X.2009.08682.x

    Article  PubMed  Google Scholar 

  78. Menon M, Hemal AK, Tewari A, Shrivastava A, Shoma AM, El-Tabey NA et al (2003) Nerve-sparing robot-assisted radical cystoprostatectomy and urinary diversion. BJU Int 92(3):232–236. https://doi.org/10.1046/j.1464-410x.2003.04329.x

    Article  CAS  PubMed  Google Scholar 

  79. Parekattil SK, Moran ME (2010) Robotic instrumentation: evolution and microsurgical applications. Indian Journal of Urology 26(3):395–403. https://doi.org/10.4103/0970-1591.70580

    Article  PubMed  PubMed Central  Google Scholar 

  80. Kowalewski KF, Seifert L, Ali S, Schmidt MW, Seide S, Haney C et al (2021) Functional outcomes after laparoscopic versus robotic-assisted rectal resection: a systematic review and meta-analysis. Surg Endosc 35(1):81–95. https://doi.org/10.1007/s00464-019-07361-1

    Article  CAS  PubMed  Google Scholar 

  81. Bongiolatti S, Farronato A, Di Marino M, Annecchiarico M, Coratti F, Cianchi F et al (2020) Robot-assisted minimally invasive esophagectomy: systematic review on surgical and oncological outcomes. Mini-invasive Surg 4:41. https://doi.org/10.20517/2574-1225.2020.28

    Article  Google Scholar 

  82. Ramirez PT, Frumovitz M, Pareja R, Lopez A, Vieira M, Ribeiro R et al (2018) Minimally invasive versus abdominal radical hysterectomy for cervical cancer. N Engl J Med 379(20):1895–1904. https://doi.org/10.1056/NEJMoa1806395

    Article  PubMed  Google Scholar 

  83. Audenet F, Sfakianos JP (2017) Evidence of atypical recurrences after robot-assisted radical cystectomy: a comprehensive review of the literature. Bladder Cancer 3(4):231–236. https://doi.org/10.3233/BLC-170127

    Article  PubMed  PubMed Central  Google Scholar 

  84. O’Sullivan KE, Kreaden US, Hebert AE, Eaton D, Redmond KC (2019) A systematic review and meta-analysis of robotic versus open and video-assisted thoracoscopic surgery approaches for lobectomy. Interact Cardiovasc Thorac Surg 28(4):526–534. https://doi.org/10.21037/acs.2019.02.04

    Article  PubMed  Google Scholar 

  85. Vijayakumar M, Shetty R (2020) Robotic surgery in oncology. Indian J Surg Oncol 11(4):549–551. https://doi.org/10.1007/s13193-020-01251-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Fernandez N, Farhat WA (2019) A comprehensive analysis of robot-assisted surgery uptake in the pediatric surgical discipline. Front Surg 6:9. https://doi.org/10.3389/fsurg.2019.00009

    Article  PubMed  PubMed Central  Google Scholar 

  87. Ballouhey Q, Villemagne T, Cros J, Vacquerie V, Berenguer D, Braik K et al (2015) Assessment of paediatric thoracic robotic surgery. Interact Cardiovasc Thorac Surg 20(3):300–303. https://doi.org/10.1093/icvts/ivu406

    Article  PubMed  Google Scholar 

  88. Mei H, Tang S (2023) Robotic-assisted surgery in the pediatric surgeons’ world: current situation and future prospectives. Front Pediatr 11:1120831. https://doi.org/10.3389/fped.2023.1120831

    Article  PubMed  PubMed Central  Google Scholar 

  89. Pandey SK, Sharma V (2019) Robotics and ophthalmology: are we there yet? Indian J Ophthalmol 67(7):988–994. https://doi.org/10.4103/ijo.IJO_1131_18

    Article  PubMed  PubMed Central  Google Scholar 

  90. Channa R, Iordachita I, Handa JT (2017) Robotic vitreoretinal surgery. Retina 37(7):1220–1228. https://doi.org/10.1097/IAE.0000000000001398

    Article  PubMed  PubMed Central  Google Scholar 

  91. Bourges JL, Hubschman JP, Burt B, Culjat M, Schwartz SD (2009) Robotic microsurgery: corneal transplantation. Br J Ophthalmol 93(12):1672–1675. https://doi.org/10.1136/bjo.2009

    Article  PubMed  Google Scholar 

  92. Mitchell B, Koo J, Iordachita I, Kazanzides P, Kapoor A, Handa J, et al (2007) Development and application of a new steady-hand manipulator for retinal surgery. Proceedings - IEEE International Conference on robotics and automation, pp 623–629

  93. Taylor RH, Menciassi A, Fichtinger G, Fiorini P, Dario P (2016) Medical robotics and computer-integrated surgery. In: Springer handbook of robotics. Springer International Publishing, pp 1657–83. https://doi.org/10.1007/978-3-319-32552-1_63.

  94. Deo N, Anjankar A (2023) Artificial intelligence with robotics in healthcare: a narrative review of its viability in India. Cureus 15(5):e39416. https://doi.org/10.7759/cureus.39416

    Article  PubMed  PubMed Central  Google Scholar 

  95. Camarillo DB, Krummel TM, Salisbury JK (2004) Robotic technology in surgery: past, present, and future. Am J Surg 188(4):2–15. https://doi.org/10.1016/j.amjsurg.2004.08.025

    Article  Google Scholar 

  96. Kaur S (2012) How medical robots are going to affect our lives. IETE Tech Rev 29(3):184–187

    Article  Google Scholar 

  97. Garcia P, Rosen J, Kapoor C et al (2009) Trauma pod: a semi-automated telerobotic surgical system. Int J Med Robot Comput Assist Surg 5(2):136–146

    Article  Google Scholar 

  98. Pandav K, Te AG, Tomer N, Nair SS, Tewari AK (2022) Leveraging 5G technology for robotic surgery and cancer care. Cancer Rep (Hoboken) 5(8):e1595. https://doi.org/10.1002/cnr2.1595

    Article  PubMed  Google Scholar 

  99. Bergholz R, Botden S, Verweij J, Tytgat S, Van Gemert W, Boettcher M et al (2020) Evaluation of a new robotic-assisted laparoscopic surgical system for procedures in small cavities. J Robot Surg 14(1):191–197. https://doi.org/10.1007/s11701-019-00961-y

    Article  PubMed  Google Scholar 

  100. Tan Wen Sheng B, Wong P, Teo Ee Hoon C (2018) Transoral robotic excision of laryngeal papillomas with flex(R) robotic system—a novel surgical approach. Am J Otolaryngol 39(3):355–358. https://doi.org/10.1016/j.amjoto.2018.03.011

    Article  PubMed  Google Scholar 

  101. Peters BS, Armijo PR, Krause C, Choudhury SA, Oleynikov D (2018) Review of emerging surgical robotic technology. Surg Endosc 32(4):1636–1655. https://doi.org/10.1007/s00464-018-6079-2

    Article  PubMed  Google Scholar 

  102. Sheth KR, Koh CJ (2019) The future of robotic surgery in pediatric urology: upcoming technology and evolution within the field. Front Pediatr 7:259. https://doi.org/10.3389/fped.2019.00259

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding agency.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the study conception and design. Literature survey, analysis and preparation of the first draft were done by SC and SD. The drafts were reviewed and edited by DM. KG supported in reviewing and editing of the drafts. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Dibyendu Mandal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics committee approval

Institutional Ethics Committee approval was not applicable for this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, S., Das, S., Ganguly, K. et al. Advancements in robotic surgery: innovations, challenges and future prospects. J Robotic Surg 18, 28 (2024). https://doi.org/10.1007/s11701-023-01801-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11701-023-01801-w

Keywords

Navigation