Skip to main content
Log in

The clinical application of neuro-robot in the resection of epileptic foci: a novel method assisting epilepsy surgery

  • Research
  • Published:
Journal of Robotic Surgery Aims and scope Submit manuscript

Abstract

During surgery for foci-related epilepsy, neurosurgeons face significant difficulties in identifying and resecting MRI-negative or deep-seated epileptic foci. Here, we present a neuro-robotic navigation system that is specifically designed for resection of MRI negative epileptic foci. We recruited 52 epileptic patients, and randomly assigned them to treatment group with either neuro-robotic navigation or conventional neuronavigation system. For each patient, in the neuro-robotic navigation group, we integrated multimodality imaging including MRI and PET-CT into the robotic workstation and marked the boundary of foci from the fused image. During surgery, this boundary was delineated by the robotic laser device with high accuracy, guiding resection for the surgeon. For deeply seated foci, we exploited the neuro-robotic navigation system to localize the deepest point with biopsy needle insertion and methylene dye application to locate the boundary of the foci. Our results show that, compared with the conventional neuronavigation, the neuro-robotic navigation system performs equally well in MRI positive epilepsy patients (ENGEL I ratio: 71.4% vs 100%, p = 0.255) systems and show better performance in patients with MRI-negative focal cortical dysplasia (ENGEL I ratio: 88.2% vs 50%, p = 0.0439). At present, there are no documented neurosurgery robots with similar function and application in the field of epilepsy. Our research highlights the added value of using neuro-robotic navigation systems in resection surgery for epilepsy, particularly in cases that involve MRI-negative or deep-seated epileptic foci.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data in this study are available from the corresponding author upon reasonable request after approval of local IRB.

References

  1. Thurman DJ, Beghi E, Begley CE et al (2011) Standards for epidemiologic studies and surveillance of epilepsy. Epilepsia 52(s7):2–26

    Article  CAS  PubMed  Google Scholar 

  2. Devinsky O, Hesdorffer DC, Thurman DJ, Lhatoo S, Richerson G (2016) Sudden unexpected death in epilepsy: epidemiology, mechanisms, and prevention. The Lancet Neurology 15(10):1075–1088

    Article  PubMed  Google Scholar 

  3. Çavuş I, Romanyshyn JC, Kennard JT et al (2016) Elevated basal glutamate and unchanged glutamine and GABA in refractory epilepsy: microdialysis study of 79 patients at the Yale Epilepsy Surgery Program. Ann Neurol 80(1):35–45

    Article  PubMed  Google Scholar 

  4. Kwan P, Brodie MJ (2000) Early identification of refractory epilepsy. N Engl J Med 342(5):314–319

    Article  CAS  PubMed  Google Scholar 

  5. Engel J (1996) Surgery for seizures. N Engl J Med 334(10):647–653. https://doi.org/10.1056/nejm199603073341008

    Article  PubMed  Google Scholar 

  6. de Tisi J, Bell GS, Peacock JL et al (2011) The long-term outcome of adult epilepsy surgery, patterns of seizure remission, and relapse: a cohort study. The Lancet 378(9800):1388–1395. https://doi.org/10.1016/s0140-6736(11)60890-8

    Article  Google Scholar 

  7. Iida K, Otsubo H, Matsumoto Y et al (2005) Characterizing magnetic spike sources by using magnetoencephalography-guided neuronavigation in epilepsy surgery in pediatric patients. J Neurosurg 102(2 Suppl):187–196. https://doi.org/10.3171/jns.2005.102.2.0187

    Article  PubMed  Google Scholar 

  8. Blümcke I, Thom M, Aronica E et al (2011) The clinicopathologic spectrum of focal cortical dysplasias: a consensus classification proposed by an ad hoc task force of the ILAE Diagnostic Methods Commission 1. Epilepsia 52(1):158–174

    Article  PubMed  Google Scholar 

  9. Brown TJ, Brennan MC, Li M et al (2016) Association of the extent of resection with survival in glioblastoma: a systematic review and meta-analysis. JAMA Oncol 2(11):1460–1469. https://doi.org/10.1001/jamaoncol.2016.1373

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lee SK, Kim DW (2013) Focal cortical dysplasia and epilepsy surgery. J Epilepsy Res 3(2):43–47. https://doi.org/10.14581/jer.13009

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yu F, Li L, Teng H, Shi D, Jiang Q (2018) Robots in orthopedic surgery. Annals of Joint. 3(3):15

    Article  Google Scholar 

  12. Stuer C, Ringel F, Stoffel M, Reinke A, Behr M, Meyer B (2011) Robotic technology in spine surgery: current applications and future developments. Acta Neurochir Suppl 109:241–245. https://doi.org/10.1007/978-3-211-99651-5_38

    Article  PubMed  Google Scholar 

  13. Kara O, Zargar H, Akca O et al (2016) Risks and benefits of pharmacological prophylaxis for venous thromboembolism prevention in patients undergoing robotic partial nephrectomy. J Urol 195(5):1348–1353

    Article  CAS  PubMed  Google Scholar 

  14. von Langsdorff D, Paquis P, Fontaine D (2015) In vivo measurement of the frame-based application accuracy of the neuromate neurosurgical robot. J Neurosurg 122(1):191–194. https://doi.org/10.3171/2014.9.Jns14256

    Article  Google Scholar 

  15. Vadera S, Chan A, Lo T et al (2017) Frameless stereotactic robot-assisted subthalamic nucleus deep brain stimulation: case report. World neurosurgery 97:762.e11-762.e14. https://doi.org/10.1016/j.wneu.2015.11.009

    Article  PubMed  Google Scholar 

  16. Kim LH, Feng AY, Ho AL, et al. (2020) Robot-assisted versus manual navigated stereoelectroencephalography in adult medically-refractory epilepsy patients. Epilepsy Res Jan https://doi.org/10.1016/j.eplepsyres.2019.106253

  17. Zheng J, Liu YL, Zhang D et al (2021) Robot-assisted versus stereotactic frame-based stereoelectroencephalography in medically refractory epilepsy. Neurophysiol Clin 51(2):111–119. https://doi.org/10.1016/j.neucli.2020.11.001

    Article  PubMed  Google Scholar 

  18. Hoffman CE, Parker WE, Rapoport BI, Zhao M, Ma H, Schwartz TH (2020) Innovations in the neurosurgical management of epilepsy. World Neurosurg 139:775–788. https://doi.org/10.1016/j.wneu.2020.03.031

    Article  PubMed  Google Scholar 

  19. Liu DF, Liu HG, Zhang K, Meng FG, Yang AC, Zhang JG (2021) The clinical application of robot-assisted ventriculoperitoneal shunting in the treatment of hydrocephalus. Front Neurosci. https://doi.org/10.3389/fnins.2021.685142

    Article  PubMed  PubMed Central  Google Scholar 

  20. Liu HG, Liu DF, Zhang K, Meng FG, Yang AC, Zhang JG (2021) Clinical application of a neurosurgical robot in intracranial Ommaya reservoir implantation. Front Neurorobot. https://doi.org/10.3389/fnbot.2021.638633

    Article  PubMed  PubMed Central  Google Scholar 

  21. Engel J, (1993) Update on surgical treatment of the epilepsies summary of the second international palm desert conference on the surgical treatment of the epilepsies. Neurology 43 (8) 1612–1612

  22. Tahta A, Turgut M, Focal cortical dysplasia: etiology, epileptogenesis, classification, clinical presentation, imaging, and management. Child's Nervous System. 2020/12/01 2020; 36 (12): 2939–2947. doi:https://doi.org/10.1007/s00381-020-04851-9

  23. Spencer S, Huh L (2008) Outcomes of epilepsy surgery in adults and children. The Lancet Neurology 7(6):525–537. https://doi.org/10.1016/s1474-4422(08)70109-1

    Article  PubMed  Google Scholar 

  24. Siegel AM, Cascino GD, Meyer FB et al (2004) Resective reoperation for failed epilepsy surgery: seizure outcome in 64 patients. Neurology 63(12):2298–2302. https://doi.org/10.1212/01.wnl.0000147476.86575.a7

    Article  CAS  PubMed  Google Scholar 

  25. Roessler K, Sommer B, Grummich P et al (2014) Improved resection in lesional temporal lobe epilepsy surgery using neuronavigation and intraoperative MR imaging: favourable long term surgical and seizure outcome in 88 consecutive cases. Seizure 23(3):201–207. https://doi.org/10.1016/j.seizure.2013.11.013

    Article  PubMed  Google Scholar 

  26. Oertel J, Gaab MR, Runge U, Schroeder HW, Wagner W, Piek J (2004) Neuronavigation and complication rate in epilepsy surgery. Neurosurg Rev 27(3):214–217. https://doi.org/10.1007/s10143-004-0324-y

    Article  PubMed  Google Scholar 

  27. Tellez-Zenteno JF, Hernandez Ronquillo L, Moien-Afshari F, Wiebe S (2010) Surgical outcomes in lesional and non-lesional epilepsy: a systematic review and meta-analysis. Epilepsy Res 89(2–3):310–318. https://doi.org/10.1016/j.eplepsyres.2010.02.007

    Article  PubMed  Google Scholar 

  28. Immonen A, Jutila L, Muraja-Murro A et al (2010) Long-term epilepsy surgery outcomes in patients with MRI-negative temporal lobe epilepsy. Epilepsia 51(11):2260–2269. https://doi.org/10.1111/j.1528-1167.2010.02720.x

    Article  PubMed  Google Scholar 

  29. Wang ZI, Alexopoulos AV, Jones SE, Jaisani Z, Najm IM, Prayson RA (2013) The pathology of magnetic-resonance-imaging-negative epilepsy. Mod Pathol 26(8):1051–1058. https://doi.org/10.1038/modpathol.2013.52

    Article  PubMed  Google Scholar 

  30. Shaker T, Bernier A, Carmant L. Focal Cortical Dysplasia in Childhood Epilepsy. Elsevier; 108–119.

  31. Colombo N, Tassi L, Deleo F et al (2012) Focal cortical dysplasia type IIa and IIb: MRI aspects in 118 cases proven by histopathology. Neuroradiology 54(10):1065–1077. https://doi.org/10.1007/s00234-012-1049-1

    Article  PubMed  Google Scholar 

  32. Kral T, von Lehe M, Podlogar M, et al. (2007) Focal cortical dysplasia: long-term seizure outcome after surgical treatment. Journal of Neurology, Neurosurgery Psychiatry.

  33. Xue H, Cai L, Dong S, Li Y (2016) Clinical characteristics and post-surgical outcomes of focal cortical dysplasia subtypes. J Clin Neurosci 23:68–72

    Article  PubMed  Google Scholar 

  34. Chassoux F, Landre E, Mellerio C et al (2012) Type II focal cortical dysplasia: electroclinical phenotype and surgical outcome related to imaging. Epilepsia 53(2):349–358. https://doi.org/10.1111/j.1528-1167.2011.03363.x

    Article  PubMed  Google Scholar 

  35. Prada F, Gennari AG, Del Bene M et al (2019) Intraoperative ultrasonography (ioUS) characteristics of focal cortical dysplasia (FCD) type II b. Seizure 69:80–86. https://doi.org/10.1016/j.seizure.2019.02.020

    Article  PubMed  Google Scholar 

  36. Krsek P, Maton B, Jayakar P et al (2009) Incomplete resection of focal cortical dysplasia is the main predictor of poor postsurgical outcome. Neurology 72(3):217–223. https://doi.org/10.1212/01.wnl.0000334365.22854.d3

    Article  CAS  PubMed  Google Scholar 

  37. Liu HG, Liu YY, Zhang H et al (2021) A bulk retrospective study of robot-assisted stereotactic biopsies of intracranial lesions guided by videometric tracker. Front Neurol. https://doi.org/10.3389/fneur.2021.682733

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chandra SP, Bal CS, Jain S et al (2014) Intraoperative coregistration of magnetic resonance imaging, positron emission tomography, and electrocorticographic data for neocortical lesional epilepsies may improve the localization of the epileptogenic focus: a pilot study. World Neurosurg Jul-Aug 82(1–2):110–117. https://doi.org/10.1016/j.wneu.2013.02.057

    Article  Google Scholar 

  39. Sommer B, Roessler K, Rampp S et al (2016) Magnetoencephalography-guided surgery in frontal lobe epilepsy using neuronavigation and intraoperative MR imaging. Epilepsy Res 126:26–36. https://doi.org/10.1016/j.eplepsyres.2016.06.002

    Article  PubMed  Google Scholar 

  40. Salamon N, Kung J, Shaw SJ et al (2008) FDG-PET/MRI coregistration improves detection of cortical dysplasia in patients with epilepsy. Neurology 71(20):1594–1601. https://doi.org/10.1212/01.wnl.0000334752.41807.2f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sone D (2021) Making the invisible visible: advanced neuroimaging techniques in focal epilepsy. Front Neurosci. https://doi.org/10.3389/fnins.2021.699176

    Article  PubMed  PubMed Central  Google Scholar 

  42. Murphy MA, O’Brien TJ, Morris K, Cook MJ (2004) Multimodality image-guided surgery for the treatment of medically refractory epilepsy. J Neurosurg 100(3):452–462. https://doi.org/10.3171/jns.2004.100.3.0452

    Article  PubMed  Google Scholar 

  43. Sacino MF, Ho CY, Murnick J et al (2016) Intraoperative MRI-guided resection of focal cortical dysplasia in pediatric patients: technique and outcomes. J Neurosurg Pediatr 17(6):672–678. https://doi.org/10.3171/2015.10.PEDS15512

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to ChenYu Wang, DePeng Zhao, and YuBing Zhang for their expert technical assistance.

Funding

This work was supported by the Scientific Research Common Program of the Beijing Municipal Commission of Education (No. KZ201510025029), the National Natural Science Foundation of China (No. 81870888 and 61761166004), and the Capital Medical Development Scientific Research Project (No. 2018-2Z-1076).

Author information

Authors and Affiliations

Authors

Contributions

All authors of this manuscript actively participated in data acquisition, commented on drafts of the manuscript, and approved its final version. YX and YC drafted the initial manuscript and reviewed the literature. HL, HZ, and WH collected the data. YZ, GZ, SX, and KZ oversaw follow-up and assessments of the patients. DL, YD, HX and DW analyzed the data and performed the statistical analysis. XZ prepared the materials. AY and JZ designed the study and revised the manuscript.

Corresponding authors

Correspondence to Jianguo Zhang or Anchao Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 273 KB)

Supplementary file2 (DOCX 213 KB)

Supplementary file3 (DOCX 18 KB)

Supplementary file4 (MP4 82739 KB)

Supplementary file5 (MP4 65364 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Chen, Y., Liu, H. et al. The clinical application of neuro-robot in the resection of epileptic foci: a novel method assisting epilepsy surgery. J Robotic Surg 17, 2259–2269 (2023). https://doi.org/10.1007/s11701-023-01615-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11701-023-01615-w

Keywords

Navigation