Skip to main content

Advertisement

Log in

Biological impacts of imidazoline derivatives

  • Review
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Imidazolines, also known as dihydroimidazolines, are an important class of aromatic five-membered heterocycles that include two nitrogen atoms. Imidazolines are present in a wide range of biologically active natural and synthetic compounds. The synthesis of imidazoline-containing drugs has expanded dramatically after the findings of the imidazoline binding site (IBS) in 1984. Furthermore, many substituted imidazolines have shown potential therapeutic efficacy in the treatment of a variety of disorders, including anthelmintics, antifungal, anticancer, hypertension, and hyperglycemia, as well as Parkinson's and Alzheimer's diseases. Moreover, chiral imidazolines are extensively used as organocatalysts in the synthesis of a wide range of natural and synthetic organic molecules. This overview highlights the different pharmacological and biological activities of imidazolines derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

U.S. FDA:

United State food and drug administration

HIV:

Human immunodeficiency virus

OLIG2:

Oligodendrocyte lineage transcription factor 2

DNA:

Deoxyribonucleic acid

HER2:

Human epidermal growth factor receptor 2

OGTT:

Oral glucose tolerance test

XPO1:

Exportin 1

OAT4:

Organic anion carrier 4

URAT1:

Uric acid carrier 1

DPP-4:

Dipeptidyl peptidase-4

PARP:

Poly (ADP-ribose) polymerase

RNA:

Ribonucleic acid

SAR:

Structure–activity relationship

GLP-1:

Glucagon-like peptide 1

AIDS:

Acquired immunodeficiency syndrome

GIP:

Gastric inhibitory polypeptide

TNF:

Tumor necrosis factor α

HSV:

Herpes simplex viruses

GSIS:

Glucose-stimulated insulin secretion

References

  • Abdel-Zaher AO, Ahmed IT, El-Koussi A (2001) The potential antidiabetic activity of some alpha-2 adrenoceptor antagonists. Pharmacol Res 44:397–409

    Article  CAS  PubMed  Google Scholar 

  • Ahmad SM, Braddock DC, Cansell G, Hermitage SA, Redmond JM, White AJP (2007) Amidines as potent nucleophilic organocatalysts for the transfer of electrophilic bromine from N-bromosuccinimide to alkenes. Tetrahedron Lett 48:5948–5952

    Article  CAS  Google Scholar 

  • Anastassiadou M, Danoun S, Crane L, Mouysset GB, Payard M, Caignard DH, Rettori MC, Remard P (2001) Synthesis and pharmacological evaluation of Imidazoline sites I1 and I2 selective ligands. Bioorg Med Chem 9:585–592

    Article  CAS  PubMed  Google Scholar 

  • Azevedo LM, Lansdell TA, Ludwig JR, Mosey RA, Woloch DK, Cogan DP, Patten GP, Kuszpit MP, Fisk JS, Tepe JT (2013) Inhibition of the human proteasome by imidazoline scaffolds. J Med Chem 56:5974–5978

    Article  CAS  PubMed  Google Scholar 

  • Bektas N, Nemutlu D, Arslan R (2015) The imidazoline receptors and ligands in pain modulation. Indian J Pharmacol 47:472–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellina F, Cauteruccio S, Rossi R (2007) Synthesis and biological activity of vicinal diaryl-substituted 1H-imidazoles. Tetrahedron 63:4571–4624

    Article  CAS  Google Scholar 

  • Bellina F, Cauteruccio S, Fiore AD, Marchetti C, Rossi R (2008) Highly selective synthesis of 4(5)-aryl-, 2, 4 (5)-diaryl-, and 4, 5-diaryl-1H-imidazoles via Pd-catalyzed direct C-5 arylation of 1-benzyl-1H-imidazole. Tetrahedron 64:6060–6072

    Article  CAS  Google Scholar 

  • Berlinck RGS, Kossuga MH (2005) Natural guanidine derivatives. Nat Prod Rep 22:516–550

    Article  CAS  PubMed  Google Scholar 

  • Berlinck RGS, Burtoloso ACB, Kossuga MH (2008) The chemistry and biology of organic guanidine derivatives. Nat Prod Rep 25:919–954

    Article  CAS  PubMed  Google Scholar 

  • Bhalay G, Edwards L, Howsham C, Hunt P, Smith N (2012) Pyrazine derivatives as ENaC blockers. US Patent US20120071479A1

  • Bhalay G, Edwards L, Howsham C, Hunt P, Smith N (2014) Pyrazine derivatives as ENaC blockers. TN2013000102A1

  • Bharti N, Dontukurthy S, Bala I, Singh G (2013) Postoperative analgesic effect of intravenous (iv) clonidine compared with clonidine administration in wound infiltration for open cholecystectomy. Br J Anaesth 111:656–661

    Article  CAS  PubMed  Google Scholar 

  • Boblewski K, Lehmann A, Sączewski F, Kornicka A, Rybczyńska A (2014) Vagotomy reveals the importance of the imidazoline receptors in the cardiovascular effects of marsanidine and 7-Memarsanidine in rats. Pharmacol Rep 66:874–879

    Article  CAS  PubMed  Google Scholar 

  • Bousquet P, Hudson A, García-Sevilla JA, Li JX (2020) Imidazoline receptor system: the past, the present, and the future. Pharmacol Rev 72:50–79

    Article  CAS  PubMed  Google Scholar 

  • Chu XJ, Lovey AJ, Vu BT, Zhao C (2014) Novel imidazolines as dual inhibitors of MDM2 and MDMX. US Patent WO2014082889A1

  • Dardonville C, Rozas I (2004) Imidazoline binding sites and their ligands: an overview of the different chemical structures. Med Res Rev 24:639–661

    Article  CAS  PubMed  Google Scholar 

  • Deepinder F, Braunstein GD (2012) Drug-induced gynecomastia: a evidence-based review. Exp Opinion Drug Safety 11:779–795

    Article  CAS  Google Scholar 

  • Del Bello F, Bargelli V, Cifani C, Gratteri P, Bazzicalupi C, Diamanti E, Giannella M, Mammoli V, Matucci R, Bonaventura MVMD, Piergentili A, Quaglia W, Pigini M (2015) Antagonism/agonism modulation to build novel antihypertensives selectively triggering I1-imidazoline receptor activation. ACS Med Chem Lett 6:496–501

    Article  PubMed  PubMed Central  Google Scholar 

  • Dibas MI, Donello JE, Gil DW, Burke JA (2013) Pharmaceutical compositions comprising 4-bromo-N-(imidazolidin-2-ylidene)-1H-benzimidazol-5-amine for treating retinal diseases. US Patent US20130046003A1

  • Donatelli C, Chongnarungsin D, Ashton R (2014) Acute respiratory failure from nilotinib-associated diffuse alveolar hemorrhage. Leuk Lymphoma 55:2408–2409

    Article  PubMed  Google Scholar 

  • Donello JE, Gil DW, Dibas MI (2013) Alpha-2 adrenergic agonist having long duration of intraocular pressure lowering effect.US Patent US20130210876A1

  • Edelmann FT (2008) 3 Advances in the coordination chemistry of amidinate and guanidinate ligands. Adv Organomet Chem 57:183–352

    Article  CAS  Google Scholar 

  • Efendic S, Efanov AM, Berggren PO, Zaitsev SV (2002) Two generations of insulinotropic imidazoline compounds. Diabetes 51:S448–S454

    Article  CAS  PubMed  Google Scholar 

  • Ferrari F, Fiorentino S, Mennuni L, Garofalo P, Letari O, Mandelli S, Giordani A, Lanza M, Caselli G (2011) Analgesic efficacy of CR4056, a novel imidazoline-2 receptor ligand, in rat models of inflammatory and neuropathic pain. J Pain Res 4:111–125

    CAS  PubMed  PubMed Central  Google Scholar 

  • George DE, Tepe JJ (2021) Advances in proteasome enhancement by small molecules. Biomolecules 11:1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gil DW, Donello JE (2008) Alpha-2B receptor agonist and anticonvulsant compositions for treating chronic pain. US Patent WO2013074320

  • Gil DW, Donello JE, Luhrs LMB, Viswanath V (2012) Method of activating regulatory T cells with alpha-2B adrenergic receptor agonists. US Patent WO2012024161A1

  • Gil DW, Donello JE, Fang WK, Nguyen PX, Chow K, Heidelbaugh TM, Gomez DG, Garst ME, Sinha SC (2012) Methods of treating alpha adrenergic mediated conditions. US Patent US20120165380A1

  • Glicksman MA, Cuny GD, Liu M, Dobson B, Auerbach K, Stein RL, Kosik KS (2007) New approaches to the discovery of cdk5 inhibitors. Curr Alzheimer Res 4:547–549

    Article  CAS  PubMed  Google Scholar 

  • Grimmett MR (1996) Comprehensive heterocyclic chemistry II. In: Katritzky AR, Scriven EFV (eds) Oxford. 3 pp 77–220

  • Guo C (2008) Mechanism of anticancer activity of 9-aminoacridine derivatives. Dissertation. Case Western Reserve University

  • Haneda S, Okui A, Ueba C, Hayashi M (2007) An efficient synthesis of 2-arylimidazoles by oxidation of 2-arylimidazolines using activated carbon–O2 system and its application to palladium-catalyzed Mizoroki–Heck reaction. Tetrahedron 63:2414–2417

    Article  CAS  Google Scholar 

  • Head GA, Mayorov DN (2006) Imidazoline receptors, novel agents and therapeutic potential. Cardiovasc Hematol Agents Med Chem 4:17–32

    Article  CAS  PubMed  Google Scholar 

  • Holt A (2003) Imidazoline binding sites on receptors and enzymes: emerging targets for novel antidepressant drugs? J Psychiatry Neurosci 28:409–414

    PubMed  PubMed Central  Google Scholar 

  • Howsham C, Lindenberg C, Perlberg A, Tufilli N (2013) Crystalline form of a succinate salt. US Patent WO2013140319A1

  • Huh DH, Ryu H, Kim YG (2004) A novel synthetic method for 2-arylmethyl substituted imidazolines and imidazoles from 2-aryl-1, 1-dibromoethenes. Tetrahedron 60:9857–9862

    Article  CAS  Google Scholar 

  • Imaki J, Mae Y, Shimizu S, Ohno Y (2009) Therapeutic potential of α2-adrenoceptor antagonism for antipsychotic-induced extrapyramidal motor disorders. Neurosci Lett 454:143–147

    Article  CAS  PubMed  Google Scholar 

  • Ishihara M, Togo H (2006) An efficient preparation of 2-imidazolines and imidazoles from aldehydes with molecular iodine and (diacetoxyiodo)benzene. Synlett 2:227–230

    Google Scholar 

  • Kelly B, McMullan M, Muguruza C, Ortega JE, Meana JJ, Callado LF, Rozas I (2015) α2-Adrenoceptor antagonists: synthesis, pharmacological evaluation, and molecular modeling investigation of pyridinoguanidine, pyridino-2-aminoimidazoline and their derivatives. J Med Chem 58:963–977

    Article  CAS  PubMed  Google Scholar 

  • Kemp JE (1991) Comprehensive organic synthesis. In: Trost B M, Fleming I (eds) Oxford. 7 pp 469–513

  • Kesari S, Makale M, Wrasidlo W, Mukthavaram R, Tsigelny IF, Kouznetsova VL (2013) Novel therapeutics for brain cancer. US Patent US20150259326A1

  • Koskelainen T, Linnanen T, Minkkilä A, Mäkelä M, Pohjakallio A (2013) New alpha2 adrenoceptor agonists. WO2013150173A1

  • Kramer T, Schmidt B, Lo Monte F (2012) Small-molecule inhibitors of GSK-3: structural insights and their application to Alzheimer’s disease models. Int J Alzheimers Dis 2012:381029

    PubMed  PubMed Central  Google Scholar 

  • Kumamoto T (2009) In Superbases for organic synthesis: guanidines, amidines, phosphazenes and related organoctalysts. In: Ishikawa I (ed) West Sussex UK. pp 295–313

  • Lanza M, Ferrari F, Menghetti I, Tremolada D, Caselli G (2014) Modulation of imidazoline I2 binding sites by CR4056 relieves postoperative hyperalgesia in male and female rats. Br J Pharmacol 171:3693–3701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li JX, Thorn DA, Qiu Y, Peng BW, Zhang Y (2014) Antihyperalgesic effects of imidazoline (I2) receptor ligands in rat models of inflammatory and neuropathic pain. Br J Pharmacol 171:1580–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez EJ, Tavazoie SF (2015) Inhibitors of creatine transport and uses thereof.US Patent US10308597B2

  • Mehedi MSA, Tepe JJ (2020) Recent advances in the synthesis of imidazolines (2009–2020). Adv Synth Catal 362:4189–4225

    Article  Google Scholar 

  • Meregalli C, Ceresa C, Canta A, Carozzi VA, Chiorazzi A, Sala B, Oggioni N, Lanza M, Letari O, Ferrari F, Avezza F, Marmiroli P, Caselli G, Cavaletti G (2012) CR4056, a new analgesic I2 ligand, is highly effective against bortezomib-induced painful neuropathy in rats. J Pain Res 5:151–167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mohammadpoor-Baltork I, Zolfigol MA, Abdollahi-Aibeik M (2004) Novel, mild and chemoselective dehydrogenation of 2-imidazolines with trichloroisocyanuric acid. Synlett 15:2803–2805

    Article  Google Scholar 

  • Nagasawa K, Hashimoto Y (2003) Synthesis of marine guanidine alkaloids and their application as chemical/biological tools. Chem Rec 3:201–211

    Article  CAS  PubMed  Google Scholar 

  • Nicolaou KC, Mathison CJN, Montagnon T (2003) New reactions of IBX: oxidation of nitrogen- and sulfur-containing substrates to afford useful synthetic intermediates. Angew Chem Int Ed 42:4077–4082

    Article  CAS  Google Scholar 

  • Nikolic K, Agbaba D (2012) Imidazoline antihypertensive drugs: selective I1-imidazoline receptors activation. Cardiovasc Ther 30:209–216

    Article  CAS  PubMed  Google Scholar 

  • Nikolic K, Veljkovic N, Gemovic B, Srdic-Rajic T, Agbaba D (2013) Imidazoline-1 receptor ligands as apoptotic agents: pharmacophore modeling and virtual docking study. Comb Chem High Throughput Screen 16:298–319

    Article  CAS  PubMed  Google Scholar 

  • Noscira SA (2013) Therapeutic use of indole-dihydroimidazole derivatives. WO2013167635A1

  • Oeckinghaus A, Ghosh S (2009) The NF–kB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol 1:a000034

    Article  PubMed  PubMed Central  Google Scholar 

  • Parker CA, Nutt DJ, Tyacke RJ (2023) Imidazoline-I2 PET tracers in neuroimaging. Int J Mol Sci 24:9787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearson WH, Lian BW, Bergmeier SC (1996) Comprehensive heterocyclic chemistry II. In: Padwa A (ed) Oxford, UK. 1A pp 1–60

  • Penning TD, Russell MA, Chen BB, Chen HY, Desai BN, Docter SH, Edwards DJ, Gesicki GJ, Liang CD, Malecha JW, Yu SS, Engleman VW, Freeman SK, Hanneke ML, Shannon KE, Westlin MM, Nickols GA (2004) Synthesis of cinnamic acids and related isosteres as potent and selective ανβ3 receptor antagonists. Bioorg Med Chem Lett 14:1471–1476

    Article  CAS  PubMed  Google Scholar 

  • Pikul SW, Cholody WM (2014) Derivatives of 1-(substituted sulfonyl)-2-aminoimidazoline as antitumor and antiproliferative agents. US Patent US9095575B2

  • Rai KML, Hassner A (1996) Comprehensive heterocyclic chemistry II. In: Padwa A (ed) Oxford, UK. 1A pp 61–96

  • Reddy DS, Saxena C, Komirishetty K (2016) Novel indazole compounds and a process for the preparation thereof. WO2015015519A1

  • Remko M, Swart M, Bickelhaupt FM (2006) Theoretical study of structure, pKa, lipophilicity, solubility, absorption, and polar surface area of some centrally acting antihypertensives. Bioorg Med Chem 14:1715–1728

    Article  CAS  PubMed  Google Scholar 

  • Reyes-Arellano A, Gómez-García O, Torres-Jaramillo J (2016) Synthesis of azolines and imidazoles and their use in drug design. Med Chem 6:561–570

    Google Scholar 

  • Rodríguez D, Gao ZG, Moss SM, Jacobson KA, Carlsson J (2015) Molecular docking screening using agonist-bound GPCR structures: probing the A2A adenosine receptor. J Chem Inf Model 55:550–563

    Article  PubMed  PubMed Central  Google Scholar 

  • Sączewski F, Kornicka A, Rybczyńska A, Hudson AL, Miao SS, Gdaniec M, Boblewski K, Lehmann A (2008) 1-[(Imidazolidin-2-yl)imino]indazole. Highly α2/I1 selective agonist: synthesis, X-ray structure, and biological activity. J Med Chem 51:3599–3608

    Article  PubMed  Google Scholar 

  • Sączewski F, Kornicka A, Balewski Ł (2016) Imidazoline scaffold in medicinal chemistry: a patent review (2012–2015). Expert Opin Ther Pat 26:1031–1048

    Article  PubMed  Google Scholar 

  • Saczewski J, Hudson A, Scheinin M, Rybczynska A, Ma D, Saczewski F, Laird S, Laurila JM, Boblewski K, Lehmann A, Gu J, Watts H (2012) Synthesis and biological activities of 2-[(heteroaryl)methyl]imidazolines. Bioorg Med Chem 20:108–116

    Article  CAS  PubMed  Google Scholar 

  • Saczewski F, Rybczynska A, Kornicka A, Saczewski J, Ma D, Maze M (2009), Derivatives of 1-[(imidazolidin-2-yl)imino]indazole. Medical University of Gdansk, WO2009071906A1

  • Sarnpitak P, Mujumdar P, Morisseau C, Hwang SH, Hammock B, Iurchenko V, Zozulya S, Gavalas A, Geronikaki A, Ivanenkov Y, Krasavin M (2014) Potent, orally available, selective COX-2 inhibitors based on 2-imidazoline core. Eur J Med Chem 84:160–172

    Article  CAS  PubMed  Google Scholar 

  • Sharma V, Peddibhotla S, Tepe JJ (2006) Sensitization of cancer cells to DNA damaging agents by imidazolines. J Am Chem Soc 128:9137–9143

    Article  CAS  PubMed  Google Scholar 

  • Sinha SC, Wang L, Chow K, Dibas MI, Garst ME (2013) N-(imidazolidin-2-ylidene)-heterocyclopenta[b]pyridine derivatives as modulators of alpha 2 adrenergic receptors. US Patent US20130030014A1

  • Sinha SC, Wang L, Chow K, Dibas MI, Garst ME (2013) N-(imidazolidin-2-ylidene)quinoline derivatives as modulators of alpha 2 adrenergic receptors. US Patent WO2013016178A1

  • Sullivan DM, Rowe TC, Ostrov DA, Turner JG (2012) Novel drug targets to overcome de novo drug-resistance in multiple myeloma.US Patent WO2012075484A2

  • Szacoń E, Rządkowska M, Kaczor AA, Kędzierska E, Fidecka S, Matosiuk D (2015) Synthesis, central nervous system activity and structure-activity relationships of novel 1-(1-alkyl-4-aryl-4,5-dihydro-1H-imidazo)-3-substituted urea derivatives. Molecules 20:3821–3840

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsivitis A, Wang A, Murphy J, Khan A, Jin Z, Moore R, Tateosian V, Bergese S (2023) Anesthesia, the developing brain, and dexmedetomidine for neuroprotection. Front Neurol. https://doi.org/10.3389/fneur.2023.1150135

    Article  PubMed  PubMed Central  Google Scholar 

  • Verma A, Joshi S, Singh D (2013) Imidazole: having versatile biological activities. J Chem. https://doi.org/10.1155/2013/329412

    Article  Google Scholar 

  • Vijesh AM, Isloor AM, Telkar S, Arulmoli T, Fun HK (2013) Molecular docking studies of some new imidazole derivatives for antimicrobial properties. Arabian J Chem 6:197–204

    Article  CAS  Google Scholar 

  • Wade M, Li YC, Wahl GM (2013) MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat Rev Cancer 13:83–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang WZ, Yuan WJ, Ren AJ, Pan YX, Tang CS, Su DF (2003) Role of I1-imidazoline receptors within the caudal ventrolateral medulla in cardiovascular responses to clonidine in rats. J Cardiovasc Pharmacol 42:1–9

    Article  CAS  PubMed  Google Scholar 

  • Wasilewska A, Sączewski F, Hudson AL, Ferdousi M, Scheinin M, Laurila JM, Rybczyńska A, Boblewski K, Lehmann A (2014) Fluorinated analogues of marsanidine, a highly α2–AR/imidazoline I1 binding site-selective hypotensive agent. Synthesis and biological activities. Eur J Med Chem 87:386–397

    Article  CAS  PubMed  Google Scholar 

  • Wikel JH, Brownstein MJ (2013) Malignant and non-malignant disease treatment with Ras antagonists. US Patent US9738614B2

  • Wright JM, Dobosiewicz MRS, Clarke PBS (2012) α- and β-Adrenergic receptors differentially modulate the emission of spontaneous and amphetamine-induced 50-kHz ultrasonic vocalizations in adult rats. Neuropsychopharmacology 37:808–821

    Article  CAS  PubMed  Google Scholar 

  • Wróblewska M, Kasprzyk J, Sączewski F, Kornicka A, Boblewski K, Lehmann A, Rybczyńska A (2013) Marsanidine and 7-Me-marsanidine, the new hypotensive imidazoline augment sodium and urine excretion in rats. Pharmacol Rep 65:1025–1032

    Article  PubMed  Google Scholar 

  • Wu J, Zhang Y, Maida LE, Santos RG, Welmaker GS, LaVoi TM, Nefzi A, Yu Y, Houghten RA, Toll L, Giulianotti MA (2013) Scaffold ranking and positional scanning utilized in the discovery of nAChR-selective compounds suitable for optimization studies. J Med Chem 56:10103–101117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Zeng SX, Lu H (2014) Targeting p53–MDM2–MDMX loop for cancer therapy. Subcell Biochem 85:281–319

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Bernard D, Wang S (2013) Small molecule inhibitors of MDM2–p53 and MDMX–p53 interactions as new cancer therapeutics. BioDiscovery 8:4

    Article  Google Scholar 

  • Ziefler D, Haxhiu MA, Kaan EC, Papp JG, Emsberger P (1996) Pharmacology of moxonidine on I1-Imidazoline receptor agonist. J Cardiovasc Pharmacol 27:S26-37

    Article  Google Scholar 

Download references

Acknowledgments

CCM thanks Science and Engineering Research Board (SERB), Govt. of India, for financial support in the form of research grants ECR/2016/000337 and CRG/2020/004509. CCM also appreciates NIT Manipur for financial and research support. AKK and RG acknowledge Ministry of Education for fellowship support.

Funding

Funding was provided by Science and Engineering Research Board (IN) (Grant nos. ECR/2016/000337 and CRG/2020/004509).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandi C. Malakar.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the author(s).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabi, A.K., Gujjarappa, R., Singh, V. et al. Biological impacts of imidazoline derivatives. Chem. Pap. (2024). https://doi.org/10.1007/s11696-024-03496-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11696-024-03496-1

Keywords

Navigation