Skip to main content

Advertisement

Log in

Abortitristoside A and desrhamnosylverbanscoside: the potential COX-2 inhibitor from the leaves of Nyctanthes arbor-tristis as anti-inflammatory agents based on the in vitro assay, molecular docking and ADMET prediction

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The plant Nyctanthes arbor-tristis belongs to the genus Nyctanthes (Oleaceae family) which is used in the treatment of many diseases like diabetes, cancer, inflammation, intestinal problem and tuberculosis in many countries of Asia. In this analysis, we have investigated the anti-inflammatory activity of various extracts of leaves of Nyctanthes arbor-tristis by the in vitro method as the cyclooxygenase inhibitory potential. The reported phytochemical constituent of the plant was in silico screened to find the cyclooxygenase inhibitory potential by molecular docking method. The molecular docking study of pre-isolated phytochemicals from the leaves of plants shows that compounds possess a great inhibition potential against COX-1 and COX-2 therefore, an in vitro comparative study is required to conclude the selective and potential COX-2 inhibitor for the development of new anti-inflammatory drug without causing any gastrointestinal ulcer. Here, we deliver a new strategy to design a selective COX-2 inhibitor from the plant origin natural compound by using molecular docking technique and in vitro screening of plant extract. In the other part of the paper, abortitristoside A (1) and abortitristoside B (2) were isolated from the leaves part of the plant. The isolated compound possesses good activity against COX-2 and COX-1 (IC50 value 7.91–8.00 μM against COX-2) which is also established by structure–activity relationship analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abou-Raya A, Abou-Raya S (2006) Inflammation: a pivotal link between autoimmune diseases and atherosclerosis. Autoimmun Rev 5(5):331–337. https://doi.org/10.1016/j.autrev-2005.12.006

    Article  CAS  PubMed  Google Scholar 

  • Amarite O, Bhuskat P, Patel N, Gadgoli C (2007) Evaluation of antioxidant activity of carotenoid from Nyctanthes arbortristis. Int J Pharmacol Biol Sci 2:57–59

    Google Scholar 

  • Ameen AM, Elkazaz AY, Mohammad HM, Barakat BM (2017) Anti-inflammatory and neuroprotective activity of boswellic acids in rotenone parkinsonian rats. Can J Physiol Pharmacol 95(7):819–829

    Article  CAS  PubMed  Google Scholar 

  • Bourn J, Cekanova M (2018) Cyclooxygenase inhibitors potentiate receptor tyrosine kinase therapies in bladder cancer cells in vitro. Drug Des Dev Ther 12:1727. https://doi.org/10.2147/DDDT.S158518

    Article  CAS  Google Scholar 

  • Cai X, Cao C, Li J, Chen F, Zhang S, Liu B, Zhang W, Zhang X, Ye L (2017) Inflammatory factor TNF-α promotes the growth of breast cancer via the positive feedback loop of TNFR1/NF-κB (and/or p38)/p-STAT3/HBXIP/TNFR1. Oncotarget 8(35):58338

    Article  PubMed  PubMed Central  Google Scholar 

  • Chetty M, Sivaji K and Rao KT (2008) Flowering plants of Chittoor district Andhra Pradhesh, 1 edition, Published by student offset printer, Tirupati, vol 193, p 3

  • Choi H, Chaiyamongkol W, Doolittle AC, Johnson ZI, Gogate SS, Schoepflin ZR, Shapiro IM, Risbud MV (2018) COX-2 expression mediated by calcium-TonEBP signaling axis under hyperosmotic conditions serves osmoprotective function in nucleus pulposus cells. J Biol Chem 293(23):8969–8981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuang SM, Lu JH, Lin KL, LongCY LYC, Hsiao HP, Tsai CC, Wu WJ, Yang HJ, Juan YS (2019) Epigenetic regulation of COX-2 expression by DNA hypomethylation via NF-κB activation in ketamine-induced ulcerative cystitis. Int J Mol Med 44(3):797–812

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clària J (2003) Cyclooxygenase-2 biology. Curr Pharm Des 9(27):2177–2190. https://doi.org/10.2174/138161203345405

    Article  PubMed  Google Scholar 

  • Cooper C, Chapurlat R, Al-Daghri N, Herrero-Beaumont G, Bruyère O, Rannou F, Roth R, Uebelhart D, Reginster JY (2019) Safety of oral non-selective non-steroidal anti-inflammatory drugs in osteoarthritis: what does the literature say? Drugs Aging 36(1):15–24

    Article  PubMed  PubMed Central  Google Scholar 

  • Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420(6917):860–867. https://doi.org/10.1038/nature01322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das S, Sasmal D, Basu SP (2008) Anti-inflammatory and antinociceptive activity of arbortristoside-A. J Ethnopharmacol 116(1):198–203. https://doi.org/10.1016/j.jep.2007.11.034

    Article  CAS  PubMed  Google Scholar 

  • Forli S, Huey R, Pique ME, Sanner MF, Goodsell DS, Olson AJ (2016) Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Nat Protoc 11(5):905–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garg R, Blando JM, Perez CJ, Lal P, Feldman MD, Smyth EM, Ricciotti E, Grosser T, Benavides F, Kazanietz MG (2018) COX-2 mediates pro-tumorigenic effects of PKCΕ in prostate cancer. Oncogenesis 37(34):4735–4749

    Article  CAS  Google Scholar 

  • Gupta P, Bajpai SK, Chandra K, Singh KL, Tandon JS (2008) Antiviral profile of Nyctanthes arbortristis L. against encephalitis causing viruses. Indian J Exp Biol 43:1156–1160

    Google Scholar 

  • Hassan MM, Shahid-Ud-Daula AF, Jahan IA, Nimmi I, Adnan T, Hossain H (2017) Anti-inflammatory activity, total flavonoids and tannin content from the ethanolic extract of Ageratum conyzoides linn. Leaf. Int J Pharmaceut Phytopharmacol Res 1(5):234–241

    Google Scholar 

  • Hewett SJ, Shi J, Gong Y, Dhandapani K, Pilbeam C, Hewett JA (2016) Spontaneous glutamatergic synaptic activity regulates constitutive COX-2 expression in neurons: opposing roles for the transcription factors creb (camp response element binding) protein and SP1 (stimulatory protein-1). J Biol Chem 291(53):27279–27288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu H, Han T, Zhuo M, Wu LL, Yuan C, Wu L, Lei W, Jiao F, Wang LW (2017) Elevated COX-2 expression promotes angiogenesis through EGFR/p38-MAPK/Sp1-dependent signalling in pancreatic cancer. Sci Rep 7:470

    Article  PubMed  PubMed Central  Google Scholar 

  • Hyde CA, Missailidis S (2009) Inhibition of arachidonic acid metabolism and its implication on cell proliferation and tumour-angiogenesis. Int Immunopharmacol 9(6):701–715. https://doi.org/10.1016/j.intimp.2009.02.003

    Article  CAS  PubMed  Google Scholar 

  • Jahng Y, Zhao LX, Moon YS, Basnet A, Kim EK, Chang HW, Ju HK, Jeong TC, Lee ES (2004) Simple aromatic compounds containing propenone moiety show considerable dual COX/5-LOX inhibitory activities. Bioorg Med Chem Lett 14(10):2559–2562. https://doi.org/10.1016/j.bmcl.2004.02.099

    Article  CAS  PubMed  Google Scholar 

  • Jensen TSR, Mahmood B, Damm MB, Backe MB, Dahllöf MS, Poulsen SS, Hansen MB, Bindslev N (2018) Combined activity of COX-1 and COX-2 is increased in non-neoplastic colonic mucosa from colorectal neoplasia patients. BMC Gastroenterol 18:31

    Article  PubMed Central  Google Scholar 

  • Jeong HJ, Han NR, Kim KY, Choi IS, Kim HM (2014) Gomisin A decreases the LPS-induced expression of iNOS and COX-2 and activation of RIP2/NF-κB in mouse peritoneal macrophages. Immunopharmacol Immunotoxicol 36(3):195–201. https://doi.org/10.3109/08923973.2014.909848

    Article  CAS  PubMed  Google Scholar 

  • Kirtikar KR, Basu BD (2000) Indian medicinal plants, vol VII. Sri Satguru Publications, New Delhi, pp 2110–2113

  • Krishnamachary B, Stasinopoulos L, Kakkad S, Penet MF, Jacob D, Wildes F, Mironchik Y, Pathak AP, Solaiyappan M, Bhujwalla ZM (2017) Breast cancer cell cyclooxygenase-2 expression alters extracellular matrix structure and function and numbers of cancer associated fibroblasts. Oncotarget 8(11):17981–17994

    Article  PubMed  PubMed Central  Google Scholar 

  • Kulmacz RJ, Wang LH (1995) Comparison of hydroperoxide initiator Requirements for the cyclooxygenase activities of prostaglandin H synthase-1 and− 2. J Biol Chem 270(41):24019–23

  • Lee ES, Park BC, Paek SH, Lee YS, Basnet A, Jin DQ, Choi HG, Yong CS, Kim JA (2006) Potent analgesic and anti-inflammatory activities of 1-furan-2-yl-3-pyridin-2-yl-propenone with gastric ulcer sparing effect. Biol Pharm Bull 29(2):361–364. https://doi.org/10.1248/bpb.29.361

    Article  CAS  PubMed  Google Scholar 

  • Leone S, Recinella L, Chiavaroli A, Orlando G, Ferrante C, Caramanico M, Cai R, Sha W, Salvatori R, Schally A, Brunetti L (2019) MON-478 antinflammatory and antioxidant effects of MIA-690 and MR-409 in GHRHKO mice colon and prefrontal cortex. J Endocrine Soc 3(1):475–478

    Google Scholar 

  • Li ZY, Chung YH, Shin EJ, Dang DK, Jeong JH, Ko SK, Nah SY, Baik TG, Jhoo JH, Ong WY, Nabeshima T, Kim HC (2017) YY-1224, a terpene trilactone-strengthened Ginkgo biloba, attenuates neurodegenerative changes induced by β-amyloid (1–42) or double transgenic overexpression of APP and PS1 via inhibition of cyclooxygenase-2. J Neuroinflam 14:94

    Article  Google Scholar 

  • Lipinski CA (2004) Lead-and drug-like compounds: the rule-of-five revolution. Drug Disc Today Technol 1(4):337–341

    Article  CAS  Google Scholar 

  • Lucas SM, Rothwell NJ, Gibson RM (2006) The role of inflammation in CNS injury and disease. Br J Pharmacol 147(S1):S232–S240. https://doi.org/10.1038/sj.bjp.0706400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mallick P, Taneja G, Moorthy B, Ghose R (2017) Regulation of drug-metabolizing enzymes in infectious and inflammatory disease: implications for biologics-small molecule drug interactions. Expert Opin Drug Metabol Toxi 13(6):605–616

    Article  CAS  Google Scholar 

  • Manju SL, Ethiraj KR, Elias G (2018) Safer anti-inflammatory therapy through dual COX-2/5-LOX inhibitors: a structure-based approach. Eur J Pharm Sci 121:356–381. https://doi.org/10.1016/j.ejps.2018.06.003

    Article  CAS  PubMed  Google Scholar 

  • Mathuram V, Kundu AB (1991) Occurrence of two new ester of 6-Hydroxyloganin in Nyctanthes arbortristis. J Indian Chem Soc 68:581–584

    Google Scholar 

  • Moreau A, Chen QH, Rao PP, Knaus EE (2006) Design, synthesis, and biological evaluation of (E)-3-(4-methanesulfonylphenyl)-2-(aryl) acrylic acids as dual inhibitors of cyclooxygenases and lipoxygenases. Bioorg Med Chem 14(23):7716–7727. https://doi.org/10.1016/j.bmc.2006.08.008

    Article  CAS  PubMed  Google Scholar 

  • Nadkarni AK (1982) Indian materia medica, vol I, 3rd edn. Popular Prakashan Pvt. Ltd., pp 857–858

  • Nagajyothi PC, Cha SJ, Yang IJ, Sreekanth TV, Kim KJ, Shin HM (2015) Antioxidant and anti-inflammatory activities of zinc oxide nanoparticles synthesized using Polygala tenuifolia root extract. J Photochem Photobiol B Biol 146:10–17

    Article  CAS  Google Scholar 

  • Omkar A, Jeeja T, Chhaya G (2006) Evaluation of anti-inflammatory activity of Nyctanthes arbortristis and Onosma echiodes. Phrmacog Mag 8:258–260

    Google Scholar 

  • Pkcsm In: Biosig.unimelb.edu.au. http://biosig.unimelb.edu.au/pkcsm/prediction

  • Pontiki E, Hadjipavlou-Litina D, Litinas K, Nicolotti O, Carotti A (2011) Design synthesis and pharmacobiological evaluation of novel acrylic acid derivatives acting as lipoxygenase and cyclooxygenase-1 inhibitors with antioxidant and anti-inflammatory activities. Eur J Med Chem 46(1):191–200. https://doi.org/10.1016/j.ejmech.2010.10.035

    Article  CAS  PubMed  Google Scholar 

  • Puleri SR, Paz NGD, Adams D, Chattopadhyay M, Cancel L, Ebong E, Orr AW, Frangos JA, Tarbell JM (2017) Fluid shear stress induces upregulation of COX-2 and PGI2 release in endothelial cells via a pathway involving PECAM-1, PI3K, FAK, and p38. Am J Physiol Heart Circ Physiol 312(3):H485–H500

    Article  Google Scholar 

  • Purushothaman KK, Venkatanarasimhan M, Sarada A (1985) Arbortristoside A and B, two iridoid glucosides from Nyctanthes arbor-tristis. Phytochemistry 24(4):773–776. https://doi.org/10.1016/s0031-9422(00)84892-x

    Article  CAS  Google Scholar 

  • Rathee JS, Shyam H, Subrata C (2007) Antioxidant activity of Nyctanthes arbortristis leaf extract. Food Chem 103:1350–1357

    Article  CAS  Google Scholar 

  • Recinella L, Chiavaroli A, Orlando G, Ferrante C, Marconi GD, Gesmundo I, Granata R, Cai R, Sha W, Schally AV, Brunetti L (2020) Antinflammatory, antioxidant, and behavioral effects induced by administration of growth hormone-releasing hormone analogs in mice. Sci Rep 10(1):1–4

    Google Scholar 

  • Rouzer CA, Marnett LJ (2011) Endocannabinoid oxygenation by cyclooxygenases, lipoxygenases, and cytochromes P450: cross-talk between the eicosanoid and endocannabinoid signaling pathways. Chem Rev 111(10):5899–5921. https://doi.org/10.1021/cr2002799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saxena RS, Gupta B, Saxena KK, Srivastava VK, Prasad DN (1987) Analgesic, antipyretic and ulcerogenic activities of Nyctanthes arbortristis leaf extract. J Ethnopharmacol 19:193–200

    Article  CAS  PubMed  Google Scholar 

  • Shanmugam S, Lee ES, Lee SK, Jeon TW, Yong CS, Yoo BK (2006) The effect of 1-furan-2-yl-3-pyridine-2-yl-propenone on pharmacokinetic parameters of theophylline. Biol Pharm Bull 29(6):1282–1285. https://doi.org/10.1007/BF02978843

    Article  CAS  PubMed  Google Scholar 

  • Sharma NP, Dong L, Yuan C, Noon KR, Smith WL (2010) Asymmetric acetylation of the cyclooxygenase-2 homodimer by aspirin and its effects on the oxygenation of arachidonic, eicosapentaenoic, and docosahexaenoic acids. Mol Pharmacol 77(6):979–986. https://doi.org/10.1124/mol.109.063115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi C, Guan Y, Zeng L, Liu G, Zhu Y, Xu H, Lu Y, Liu J, Guo J, Feng X, Zhao X, Jiang W, Li G, Li G, Dai Y, Jin F, Li W, Zhou W (2018) High COX-2 expression contributes to a poor prognosis through the inhibition of chemotherapy-induced senescence in nasopharyngeal carcinoma. Int J Oncol 53(3):1138–1148

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith WL, Fitzpatrick FA (1996) The eicosanoids: cyclooxygenase, lipoxygenase, and epoxygenase pathways. New Comp Biochem 31:283–307. https://doi.org/10.1016/S0167-7306(02)36015-0

    Article  Google Scholar 

  • Smith WL, Urade Y, Jakobsson PJ (2011) Enzymes of the cyclooxygenase pathways of prostanoid biosynthesis. Chem Rev 111(10):5821–5865. https://doi.org/10.1021/cr2002992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Storici P, De Biase D, Bossa F et al (2004) Structures of γ-aminobutyric acid (GABA) aminotransferase, a pyridoxal 5′-phosphate, and [2Fe-2S] cluster-containing enzyme, complexed with γ-ethynyl-GABA and with the antiepilepsy drug vigabatrin. J Biol Chem 279:363–373. https://doi.org/10.1074/jbc.m305884200

    Article  CAS  PubMed  Google Scholar 

  • SwissADME. In: Swissadme.ch. https://www.swissadme.ch

  • Tempany H (1950) The wealth of India. A dictionary of Indian raw materials and industrial products, vol I, raw materials. Industrial Product

  • Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uribe G, Villéger R, Bressollier P, Dillard RN, Worthley DL, Wang TC, Powell DW, Urdaci MC, Pinchuk IV (2018) Lactobacillus rhamnosus GG increases COX 2 expression and PGE2 secretion in colonic myofibroblasts via a MyD88 dependent mechanism during homeostasis. Cell Microbiol Cell Microbiol 20(11):e12871

    Article  PubMed  Google Scholar 

  • Willerson JT, Ridker PM (2004) Inflammation as a cardiovascular risk factor. Circulation 109(21):2–10. https://doi.org/10.1161/01.CIR.0000129535.04194.38

    Article  Google Scholar 

  • Zago M, Sheridan JA, Traboulsi H, Hecht E, Zhang Y, Guerrina N, Matthews J, Nair P, Eidelman DH, Hamid Q, Baglole CJ (2017) Low levels of the AhR in chronic obstructive pulmonary disease (COPD)-derived lung cells increases COX-2 protein by altering mRNA stability. PLoS ONE 12(7):e0180881

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author expresses thanks to the CSIR-HRD, New Delhi for providing financial assistance in the form of an award of JRF (Award No. 09/386(0061)/2018-EMR-I).

Funding

This work was supported by CSIR-HRD New Delhi (Grant number 09/386(0061)/2018-EMR-I). Authors Rahul Kumar Vishwakarma and Devendra Singh Negi have received research support from CSIR-HRD, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rahul Kumar Vishwakarma or Devendra Singh Negi.

Ethics declarations

Conflict of interest

There is no conflict of interest from any authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7919 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vishwakarma, R.K., Negi, D.S. & Negi, A. Abortitristoside A and desrhamnosylverbanscoside: the potential COX-2 inhibitor from the leaves of Nyctanthes arbor-tristis as anti-inflammatory agents based on the in vitro assay, molecular docking and ADMET prediction. Chem. Pap. 77, 3035–3049 (2023). https://doi.org/10.1007/s11696-023-02686-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-023-02686-7

Keywords

Navigation