Skip to main content
Log in

An investigation and analysis of structural and electrochemical properties of highly ionic conductive La2−xSrxSn2O7−δ electrolyte for SOFC applications

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

This study primarily focused on the investigation, synthesis and analysis of lanthanum and tin pyrochlores electrolytes for solid oxide fuel cell (SOFC) applications. Ceramic samples with diverse compositions of La2−xSrxSn2O7−δ (x = 0.05, 0.1, 0.15, 0.2, 0.25, and 0.3) were synthesized by using solid-state reaction (SSR) methods. The prepared La2−xSrxSn2O7−δ samples were characterized by using X-ray diffraction, scanning electron microscopy and electrochemical impedance spectroscopy measurements. The results were further interpreted regarding the formation of high oxygen vacancy and structural disorder in the La2−xSrxSn2O7−δ matrix. The doping of lanthanum (La3+) by strontium (Sr2+) had a beneficial and remarkable effect on the structural and electrical properties: the increase in dopant (Sr) concentration decreased the lattice parameters of the crystalline phase and enhanced the creation of oxygen vacancies, which consequently increased the ionic conductivity and decreased the activation energy. Thus, it could be understood that the studied new La2−xSrxSn2O7−δ electrolyte would be one of the potential candidates for intermediate temperature SOFC applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdel-Khalek E, Mohamed HM (2013) Synthesis, structural and magnetic properties of La1−xCaxFeO3 prepared by the co-precipitation method. Hyperfine Interact 222:57–67

    CAS  Google Scholar 

  • Barbero BP, Gamboa JA, Cadus LE (2006) Synthesis and characterisation of La1xCaxFeO3 perovskite-type oxide catalysts for total oxidation of volatile organic compounds. Appl Catal B Environ 65:21–30

    CAS  Google Scholar 

  • Cao X, Vassen R, Stover D (2004) Ceramic materials for thermal barrier coatings. J Eur Ceram Soc 24:1–10

    CAS  Google Scholar 

  • Chartier A, Meis C, Crocombette J-P et al (2003) Atomistic modeling of displacement cascades in La2Zr2O7 pyrochlore. Phys Rev B 67:174102

    Google Scholar 

  • Ciambelli P, Cimino S, De Rossi S et al (2000) AMnO3 (A = La, Nd, Sm) and Sm1−xSrxMnO3 perovskites as combustion catalysts: structural, redox and catalytic properties. Appl Catal B Environ 24:243–253

    CAS  Google Scholar 

  • Ciambelli P, Cimino S, Lisi L et al (2001) La, Ca and Fe oxide perovskites: preparation, characterization and catalytic properties for methane combustion. Appl Catal B Environ 33:193–203

    CAS  Google Scholar 

  • Díaz-Guillén J, Díaz-Guillén M, Padmasree K et al (2008) High ionic conductivity in the pyrochlore-type Gd2−yLayZr2O7 solid solution (0 ≤ y ≤ 1). Solid State Ionics 179:2160–2164

    Google Scholar 

  • Díaz-Guillén J, Fuentes A, Díaz-Guillén M et al (2009) The effect of homovalent A-site substitutions on the ionic conductivity of pyrochlore-type Gd2Zr2O7. J Power Sour 186:349–352

    Google Scholar 

  • Ewing RC, Weber WJ, Lian J (2004) Nuclear waste disposal—pyrochlore (A2B2O7): nuclear waste form for the immobilization of plutonium and “minor” actinides. J Appl Phys 95:5949–5971

    CAS  Google Scholar 

  • Fergus JW (2006) Electrolytes for solid oxide fuel cells. J Power Sour 162:30–40

    CAS  Google Scholar 

  • Froboese L, Van Der Sichel JF, Loellhoeffel T et al (2019) Effect of microstructure on the ionic conductivity of an all solid-state battery electrode. J Electrochem Soc 166:A318

    Google Scholar 

  • Fu Z, Yang HK, Moon BK et al (2009) La2Sn2O7: Eu3+ micronanospheres: hydrothermal synthesis and luminescent properties. Crys Growth Des 9:616–621

    CAS  Google Scholar 

  • Gardner JS, Gingras MJ, Greedan JE (2010) Magnetic pyrochlore oxides. Rev Mod Phys 82:53

    CAS  Google Scholar 

  • Gill JK, Pandey O, Singh K (2011) Ionic conductivity, structural and thermal properties of pure and Sr2+ doped Y2Ti2O7 pyrochlores for SOFC. Solid State Sci 13:1960–1966

    CAS  Google Scholar 

  • Gill JK, Pandey O, Singh K (2012) Ionic conductivity, structural and thermal properties of Ca2+ doped Y2Ti2O7 pyrochlores for SOFC. Int J Hydrog Energy 37:3857–3864

    CAS  Google Scholar 

  • Howard C, Hunter B, Swinkels D (1997) Rietica IUCR. Powder Diff 22:21

    Google Scholar 

  • Hui SR, Roller J, Yick S et al (2007) A brief review of the ionic conductivity enhancement for selected oxide electrolytes. J Power Sour 172:493–502

    CAS  Google Scholar 

  • Jin Y-J, Liu Z-G, Cao G et al (2019) Microstructure and electrical property of GdSmZr2O7 doped by rare-earth Ce. Ceram Int 45:8707–8712

    CAS  Google Scholar 

  • Kaliyaperumal C, Jayabalan S, Sankarakumar A et al (2020) Structural and electrical characteristics of nanocrystalline La2Sn2O7 pyrochlore. Solid State Sci 105:106245

    CAS  Google Scholar 

  • Krasnov A, Shein I, Piir I et al (2018) Bismuth titanate pyrochlores doped by alkaline earth elements: first-principles calculations and experimental study. Solid State Ionics 317:183–189

    CAS  Google Scholar 

  • Matović B, Maletaškić J, Yoshida K et al (2019) Synthesis, characterization and sintering of fluorite and pyrochlore-type compounds: Pr2Zr2O7, Sm2Zr2O7 and PrSmZr2O7. Mater Today Proc 16:156–162

    Google Scholar 

  • Moreno K, Mendoza-Suárez G, Fuentes A et al (2005) Cooperative oxygen ion dynamics in Gd2Ti2−yZryO7. Phys Rev B 71:132301

    Google Scholar 

  • Mori M, Tompsett GM, Sammes NM et al (2003) Compatibility of GdxTi2O7 pyrochlores (1.72 ≤ x ≤ 2.0) as electrolytes in high-temperature solid oxide fuel cells. Solid State Ionics 158:79–90

    CAS  Google Scholar 

  • Moriga T, Yoshiasa A, Kanamaru F et al (1989) Crystal structure analyses of the pyrochlore and fluorite-type Zr2Gd2O7 and anti-phase domain structure. Solid State Ionics 31:319–328

    CAS  Google Scholar 

  • Mustafa GM, Atiq S, Abbas SK et al (2018) Tunable structural and electrical impedance properties of pyrochlores based Nd doped lanthanum zirconate nanoparticles for capacitive applications. Ceram Int 44:2170–2177

    CAS  Google Scholar 

  • Orlovskaya N, Chen Y, Miller N et al (2011) Glycine–nitrate synthesis of Sr doped La2Zr2O7 pyrochlore powder. Adv Appl Ceram 110:54–57

    CAS  Google Scholar 

  • Pan W, Phillpot SR, Wan C et al (2012) Low thermal conductivity oxides. MRS Bull 37:917–922

    CAS  Google Scholar 

  • Quader A, Mustafa GM, Abbas SK et al (2020) Efficient energy storage and fast switching capabilities in Nd-substituted La2Sn2O7 pyrochlores. Chem Eng J 396:125198

    CAS  Google Scholar 

  • Risovany V, Zakharov A, Muraleva E et al (2006) Dysprosium hafnate as absorbing material for control rods. J Nucl Mater 355:163–170

    CAS  Google Scholar 

  • Sergienko I, Keppens V, Mcguire M et al (2004) Metallic ferroelectricity in the pyrochlore Cd2Re2O7. Phys Rev Lett 92:065501

    CAS  PubMed  Google Scholar 

  • Shaikh S, Rode CV (2020) Rational synthesis of 10GDC electrolyte through a microwave irradiation GNP facile route for SOFC applications. RSC Adv 10:3020–3028

    CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava A (2009) Chemical bonding and crystal field splitting of the Eu3+ 7F1 level in the pyrochlores Ln2B2O7 (Ln = La3+, Gd3+, Y3+, Lu3+; B = Sn4+, Ti4+). Opt Mater 31:881–885

    CAS  Google Scholar 

  • Subramanian M, Aravamudan G, Rao GS (1983) Oxide pyrochlores—a review. Progress Solid State Chem 15:55–143

    CAS  Google Scholar 

  • Tong Y, Qian X, Zhao W et al (2013) Synthesis and catalytic properties of TiO2/Nd2Zr2O7 nanocomposites. J Chin Ceram Soc 41:34–37

    CAS  Google Scholar 

  • Traqueia L, Marques F, Kharton V (2006) Oxygen ion conduction in oxide materials: selected examples and basic mechanisms. BOLETIN-SOCIEDAD ESPANOLA DE CERAMICA Y VIDRIO 45:115

    CAS  Google Scholar 

  • Valdés-Ibarra M, Díaz-Guillén J, Padmasree K et al (2019) Oxygen ion conducting pyrochlore oxides prepared by an ultrasound-assisted wet chemistry route: Ca-doped Gd2Ti2O7 nanocrystals. Int J Hydrogen Energy 44:12515–12524

    Google Scholar 

  • Walker JD, Hayes JR, Gaultois MW et al (2013) A case for oxygen deficiency in Gd2Ti2−xZrxO7 pyrochlore-type oxides. J Alloys Compd 565:44–49

    CAS  Google Scholar 

  • Wang SM, Xiu ZL, Lü MK et al (2007) Combustion synthesis and luminescent properties of Dy3+-doped La2Sn2O7 nanocrystals. Mater Sci Eng B 143:90–93

    CAS  Google Scholar 

  • Xia XL, Ouyang JH, Liu ZG (2010) Electrical properties of gadolinium–europium zirconate ceramics. J Am Ceram Soc 93:1074–1080

    CAS  Google Scholar 

  • Yamamura H, Nishino H, Kakinuma K et al (2003) Electrical conductivity anomaly around fluorite–pyrochlore phase boundary. Solid State Ionics 158:359–365

    CAS  Google Scholar 

  • Yang J, Su Y, Li H et al (2011) Hydrothermal synthesis and photoluminescence of Ce3+ and Tb3+ doped La2Sn2O7 nanocrystals. J Alloys Compd 509:8008–8012

    CAS  Google Scholar 

  • Yang F, Wang Y, Zhao X et al (2015) Enhanced ionic conductivity in pyrochlore and fluorite mixed phase yttrium-doped lanthanum zirconate. J Power Sour 273:290–297

    CAS  Google Scholar 

  • Zhang J, Lian J, Fuentes AF et al (2009) Enhanced radiation resistance of nanocrystalline pyrochlore Gd2(Ti0.65Zr0.35)2O7. Appl Phys Lett 94:243110

    Google Scholar 

  • Zhang H, Haule K, Vanderbilt D (2017) Metal-insulator transition and topological properties of pyrochlore iridates. Phys Rev Lett 118:026404

    PubMed  Google Scholar 

  • Zhao Y, Li N, Xu C et al (2017) Abnormal pressure induced photoluminescence enhancement and phase decomposition in pyrochlore La2Sn2O7. Adv Mater 29:1701513

    Google Scholar 

Download references

Acknowledgements

Authors are thankful to the members of the M2E platform at the Laboratory of Electrochemistry and Physical chemistry of Materials and Interfaces in Grenoble, France, for facilitating X-ray analysis and complex impedance spectroscopy as well as for providing their laboratory for experimental study. Also, special thanks to LIME Laboratory, University of Jijel, BP 98 Ouled Aissa, 18000, Algeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatima Melit.

Ethics declarations

Conflict of interest

This is to declare that there is no competing interest or conflict of interest among all authors. All authors are mutually agreed to submit this manuscript for publication. Also, there is no conflict of interest of any of the organization in publishing the present work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Equation 1:

$$\rho = \frac{4 \times m}{{\pi \times d^{2} \times e}}$$
(1)

where ‘e’ is the pellet thickness, ‘m’ is the mass of the pellet, and ‘d’ is the diameter of the pellet.

Equation 2:

$$\sigma_{{{\text{ac}}}} = \frac{l}{{{\text{RA}}}}$$
(2)

where ‘l’ is the thickness of the pellet, ‘A’ is the cross section of the pellet, and ‘R’ is the resistance of bulk.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melit, F., Bounar, N., Shaikh, S.P.S. et al. An investigation and analysis of structural and electrochemical properties of highly ionic conductive La2−xSrxSn2O7−δ electrolyte for SOFC applications. Chem. Pap. 77, 2697–2705 (2023). https://doi.org/10.1007/s11696-022-02659-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-022-02659-2

Keywords

Navigation