Skip to main content
Log in

A three-dimensional hybrid of CdS quantum dots/chitosan/reduced graphene oxide-based sensor for the amperometric detection of ceftazidime

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Ceftazidime (CFZ), an anti-bacterial infection drug, was electrochemically investigated at the surface of CdS quantum dots/chitosan/reduced graphene oxide modified glassy carbon electrode (CdS-QDs/CS/rGO/GCE) in pH 3.0 phosphate buffer solution. The modified electrode was described by scanning electron microscopy, Fourier-transform infrared spectroscopy, electrochemical impedance spectroscopy, and cyclic voltammetry. Graphene oxide was synthesized through Hummers’method, which was electrochemically reduced at GCE. CS was used as the introduction of amino groups onto the surface rGO/GCE. The presence of CdS-QDs on the surface of CS/rGO/GCE improved the responded current of the electrooxidation toward CFZ. Under optimized conditions, amperometry in stirred solutions at the practical potential of 0.86 V displayed a linear range of concentration between 15 nM and 95 μM of CFZ. The limit of detection was 4.5 nM. The suggested sensor has high sensitivity and good selectivity for determining CFZ in spiked real samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

GCE:

Glassy carbon electrode

CdS-QDs:

CdS quantum dots

CS:

Chitosan

rGO:

Reduced graphene oxide

CFZ:

Ceftazidime

EDC:

1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride

NHS:

N-hydroxysuccinimid

TEM:

Transmission electron microscopy

SEM:

Scanning electron microscope

FT-IR:

Fourier-transform infrared spectroscopy

CV:

Cyclic voltammetry

EIS:

Electrochemical impedance spectroscopy

PBS:

Phosphate buffer solution

LOD:

Limit of detection

References

  • Abdollahi H, Shamsipur M, Barati A (2014) Kinetic fluorescence quenching of CdS quantum dots in the presence of Cu (II): chemometrics-assisted resolving of the kinetic data and quantitative analysis of Cu (II). Spectrochim Acta Part A Mol Biomol Spectrosc 127:137–143

    Article  CAS  Google Scholar 

  • Amiri A, Faridbod F, Zoughi S (2021) An optical nanosensor fabricated by carbon dots embedded in silica molecularly imprinted polymer for sensitive detection of ceftazidime antibiotic. J Photochem Photobiol A 408:113111

    Article  CAS  Google Scholar 

  • Arab N, Fotouhi L, Salis A (2021) Electrosynthesised CdS@ ZnS quantum dots decorated multi walled carbon nanotubes for analysis of propranolol in biological fluids and pharmaceutical samples. Microchem J 168:106453

    Article  CAS  Google Scholar 

  • Azadbakht A, Gholivand MB (2014) Covalent attachment of Ni-2, 3-pyrazine dicarboxylic acid onto gold nanoparticle gold electrode modified with penicillamine-CdS quantum dots for electrocatalytic oxidation and determination of urea. Electrochim Acta 125:9–21

    Article  CAS  Google Scholar 

  • Aziz M, Halim FSA, Jaafar J (2014) Preparation and characterization of graphene membrane electrode assembly. J Teknol. https://doi.org/10.11113/jt.v69.3388

    Article  Google Scholar 

  • Bergman J, Harvill L, Hawkins S, Sladky K, Cox S (2021) Determination of ceftazidime in plasma by RP-HPLC and ultraviolet detection. Biomed Chromatogr 35(7):e5104

    Article  CAS  Google Scholar 

  • Bunkoed O, Raksawong P, Chaowana R, Nurerk P (2020) A nanocomposite probe of graphene quantum dots and magnetite nanoparticles embedded in a selective polymer for the enrichment and detection of ceftazidime. Talanta 218:121168

    Article  CAS  Google Scholar 

  • Chen J, Zheng A, Gao Y, He C, Wu G, Chen Y et al (2008) Functionalized CdS quantum dots-based luminescence probe for detection of heavy and transition metal ions in aqueous solution. Spectrochim Acta Part A Mol Biomol Spectrosc 69(3):1044–1052

    Article  Google Scholar 

  • de Haro Moreno A, Salgado HRN (2012) Comparison of high performance liquid chromatography and three titrimetric methods for the determination of ceftazidime in pharmaceutical formulations. Adv Anal Chem 2(3):6–13

    Google Scholar 

  • El-Maali NA (2000) Voltammetric analysis of ceftazidime after preconcentration at various mercury and carbon electrodes: application to sub-ppb level determination in urine samples. Talanta 51(5):957–968

    Article  CAS  Google Scholar 

  • Felix FS, Ferreira LM, Vieira F, Trindade GM, Ferreira VS, Angnes L (2015) Amperometric determination of promethazine in tablets using an electrochemically reduced graphene oxide modified electrode. New J Chem 39(1):696–702

    Article  CAS  Google Scholar 

  • Ferreira VS, Zanoni MVB, Fogg AG (1997a) Cathodic stripping voltammetric determination of ceftazidime in urine at a hanging mercury drop electrode. Microchem J 57(1):115–122

    Article  Google Scholar 

  • Ferreira VS, Zanoni MVB, Furlan M, Fogg AG (1997b) Differential pulse polarographic determination of ceftazidime in urine samples with and without prior extraction. Anal Chim Acta 351(1–3):105–114

    Article  CAS  Google Scholar 

  • Ferreira VS, Zanoni MVB, Fogg AG (1998) Indirect cathodic-stripping voltammetric determination of ceftazidime as a mercury salt. Anal Chim Acta 367(1–3):255–259

    Article  CAS  Google Scholar 

  • Ferreira VS, Zanoni MVB, Fogg AG (1999) Cathodic stripping voltammetric determination of ceftazidime with reactive accumulation at a poly-L-lysine modified hanging mercury drop electrode. Anal Chim Acta 384(2):159–166

    Article  CAS  Google Scholar 

  • Fu L, Wang A, Xie K, Zhu J, Chen F, Wang H et al (2020) Electrochemical detection of silver ions by using sulfur quantum dots modified gold electrode. Sens Actuators B Chem 304:127390

    Article  CAS  Google Scholar 

  • Guerrero L, Carcelero E, Ribas J, Soy D (2013) A fast and accurate high performance liquid chromatography assay to quantify plasma ceftazidime concentrations for clinical routine. J Liq Chromatogr Relat Technol 36(13):1777–1787

    Article  CAS  Google Scholar 

  • Hasanjani HA, Zarei K (2018) Electrochemical sensor for ultrasensitive determination of ceftazidime using hollow platinum nanoparticles/reduced graphene oxide/pencil graphite electrode. Chem Pap 72(8):1935–1944

    Article  Google Scholar 

  • Incebay H, Saylakci R (2021) Voltammetric determination of neotame by using chitosan/nickelnanoparticles/multi walled carbon nanotubes biocomposite as a modifier. Electroanalysis 33(6):1451–1460

    Article  CAS  Google Scholar 

  • Iranifam M, Imani-Nabiyyi A, Khataee A, Kalantari J (2016) Enhanced luminol–O2 chemiluminescence reaction by CuO nanoparticles as oxidase mimics and its application for determination of ceftazidime. Anal Methods 8(18):3816–3823

    Article  CAS  Google Scholar 

  • Liu B, Cui L, Zhang H (2018) Voltammetric determination of ceftazidime using a carbon nanotube modified electrode with the enhancement effect of sodium dodecyl benzene sulphonate. Curr Pharm Anal 14(5):491–495

    Article  CAS  Google Scholar 

  • Mahramyari S, Pourbasheer E, Banaei A, Ganjali MR, Norouzi P (2014) Simultaneous spectrophotometric determination of ceftazidime and sulbactam using multivariate calibration methods. RSC Adv 4(77):41039–41044

    Article  CAS  Google Scholar 

  • Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A et al (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814

    Article  CAS  Google Scholar 

  • Marzouq MA, Salman BI, Hussein SA, Ali MF (2019) Utility of fluorescamine-based approach for highly sensitive spectrofluorimetric determination of Ceftazidime and Vancomycin in pharmaceuticals and real human plasma. Microchem J 145:218–225

    Article  CAS  Google Scholar 

  • Moreira LFPP, Buffon E, de Sá AC, Stradiotto NR (2021) Fructose determination in fruit juices using an electrosynthesized molecularly imprinted polymer on reduced graphene oxide modified electrode. Food Chem 352:129430

    Article  CAS  Google Scholar 

  • Nady H, El-Rabiei M, Abd El-Hafez G (2017) Electrochemical oxidation behavior of some hazardous phenolic compounds in acidic solution. Egypt J Pet 26(3):669–678

    Article  Google Scholar 

  • Naebe M, Wang J, Amini A, Khayyam H, Hameed N, Li LH et al (2014) Mechanical property and structure of covalent functionalised graphene/epoxy nanocomposites. Sci Rep 4(1):1–7

    Article  Google Scholar 

  • Paimard G, Gholivand MB, Shamsipur M, Gholivand K, Mohammadi-Behzad L, Gholami A et al (2015) Fabrication of a highly sensitive amperometric sensor using 1, 4-phenylene-N, N′-bis (O, O-diphenylphoramidate)/CdS quantum dots/multi-walled carbon nanotubes for nanomolar detection of captopril. J Electroanal Chem 738:176–183

    Article  CAS  Google Scholar 

  • Paimard G, Shahlaei M, Moradipour P, Karamali V, Arkan E (2020) Impedimetric aptamer based determination of the tumor marker MUC1 by using electrospun core-shell nanofibers. Microchim Acta 187(1):1–10

    Article  Google Scholar 

  • Paimard G, Mohammadi R, Bahrami R, Khosravi-Darani K, Sarlak Z, Rouhi M (2021) Detoxification of patulin from juice simulator and apple juice via cross-linked Se-chitosan/L-cysteine nanoparticles. LWT 143:111146

    Article  CAS  Google Scholar 

  • Piton GR, Augusto KK, Wong A, Moraes FC, Fatibello-Filho O (2021) A novel electrochemical glassy carbon electrode modified with carbon black and glyceline deep eutectic solvent within a crosslinked chitosan film for simultaneous determination of acetaminophen and diclofenac. Electroanalysis. https://doi.org/10.1002/elan.202100325

    Article  Google Scholar 

  • Razmi R, Shahpari B, Pourbasheer E, Boustanifar MH, Azari Z, Ebadi A (2016) Preconcentration and determination of ceftazidime in real samples using dispersive liquid–liquid microextraction and high-performance liquid chromatography with the aid of experimental design. J Sep Sci 39(21):4116–4123

    Article  CAS  Google Scholar 

  • Rouhani M, Soleymanpour A (2021) Ultrasensitive electrochemical determination of trace ceftizoxime using a thin film of Preyssler nanocapsules on pencil graphite electrode surface modified with reduced graphene oxide. Microchem J 165:106160

    Article  CAS  Google Scholar 

  • Ruiz S, Tamayo JA, Delgado Ospina J, Navia Porras DP, Valencia Zapata ME, Mina Hernandez JH et al (2019) Antimicrobial films based on nanocomposites of chitosan/poly (vinyl alcohol)/graphene oxide for biomedical applications. Biomolecules 9(3):109

    Article  CAS  Google Scholar 

  • Sanli S, Sanli N, Gumustas M, Ozkan SA, Karadas N, Aboul-Enein HY (2011) Simultaneous estimation of ceftazidime and ceftizoxime in pharmaceutical formulations by HPLC method. Chromatographia 74(7–8):549

    Article  CAS  Google Scholar 

  • Shahrokhian S, Salimian R, Rastgar S (2014) Pd–Au nanoparticle decorated carbon nanotube as a sensing layer on the surface of glassy carbon electrode for electrochemical determination of ceftazidime. Mater Sci Eng C 34:318–325

    Article  CAS  Google Scholar 

  • Siddiqui MR, Hakami AAH, Wabaidur SM, Alothman ZA, Khan MA, Husain FM (2020) UPLC-MS/MS and Dushman reaction based spectrophotometric method for determination of Ceftazidime, an antibiotic, in medicinal formulation. Food Sci Technol 41:225–231

    Article  Google Scholar 

  • Sillén H, Mitchell R, Sleigh R, Mainwaring G, Catton K, Houghton R et al (2015) Determination of avibactam and ceftazidime in human plasma samples by LC–MS. Bioanalysis 7(12):1423–1434

    Article  Google Scholar 

  • Sun Y, Li X, Wang X, Yu Z, Wang T (2018) An electrochemical sensor for determination of Ceftazidime based on poly (crystal violet) doped platinum nanoparticles modified electrode. Int J Electrochem Sci 13:1859–1868

    Article  CAS  Google Scholar 

  • Tabrizi MA, Ferré-Borrull J, Kapruwan P, Marsal LF (2019) A photoelectrochemical sandwich immunoassay for protein S100β, a biomarker for Alzheimer’s disease, using an ITO electrode modified with a reduced graphene oxide-gold conjugate and CdS-labeled secondary antibody. Microchim Acta 186(2):1–9

    Article  CAS  Google Scholar 

  • Tarinc D, Dogan-Topal B, Golcu A, Ozkan SA (2014) Electrochemical investigation and determination of ceftazidime in pharmaceutical dosage forms and human urine. J Anal Chem 69(9):899–908

    Article  CAS  Google Scholar 

  • Topsoy OK, Muhammad F, Kolak S, Ulu A, Güngör Ö, Şimşek M et al (2021) Fabrication of electrospun polycaprolactone/chitosan nanofiber-modified screen-printed electrode for highly sensitive detection of diazinon in food analysis. Measurement 187:110250

    Article  Google Scholar 

  • Torkashvand M, Gholivand M, Malekzadeh G (2016) Construction of a new electrochemical sensor based on molecular imprinting recognition sites on multiwall carbon nanotube surface for analysis of ceftazidime in real samples. Sens Actuators B Chem 231:759–767

    Article  CAS  Google Scholar 

  • White N (2003) Melioidosis. The Lancet 361(9370):1715–1722

    Article  CAS  Google Scholar 

  • Xu W, Gao P, Zhang X, Song L (2008) Evaluation of Ceftazidime contents in antibiotic discs by capillary electrophoresis. New Microbiol 31(3):377

    Google Scholar 

  • Yilmaz UT, Uzun D, Yilmaz H (2015) A new method for rapid and sensitive determination of cholic acid in gallbladder bile using voltammetric techniques. Microchem J 122:159–163

    Article  CAS  Google Scholar 

  • Zarei K, Lesani M (2020) Partially oxidized poly diphenylamine for sensitive electrochemical determination of ceftazidime. Port Electrochim Acta 38(4):229–241

    Article  CAS  Google Scholar 

  • Zhang W, Chen C, Yang D, Dong G, Jia S, Zhao B et al (2016) Optical biosensors based on nitrogen-doped graphene functionalized with magnetic nanoparticles. Adv Mater Interfaces 3(20):1600590

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of this work by the Razi University Research for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giti Paimard.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paimard, G., Shamsipur, M. & Gholivand, M.B. A three-dimensional hybrid of CdS quantum dots/chitosan/reduced graphene oxide-based sensor for the amperometric detection of ceftazidime. Chem. Pap. 77, 437–449 (2023). https://doi.org/10.1007/s11696-022-02494-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-022-02494-5

Keywords

Navigation