Skip to main content
Log in

Cuprous oxide/nitrogen-doped graphene nanocomposites as electrochemical sensors for ofloxacin determination

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Cu2O/nitrogen-doped grapheme(NG) nanocomposite material was prepared via a facile one step chemical reduction and characterized by means of X-ray diffraction(XRD) and scanning electron microscopy(SEM). A new electrochemical sensor was then fabricated by coating Cu2O/nitrogen-doped graphene nanocomposite with Nafion on glassy carbon electrode(Cu2O/NG/Nafion/GCE). The electrochemical response of this modified electrode toward ofloxacin was examined by cyclic voltammetry. The results indicate that Cu2O/NG/Nafion composite-modified electrode exhibits higher catalytic activity in the electrochemical oxidation of ofloxacin compared with glassy carbon electrode(GCE), Cu2O/Nafion modified electrode(Cu2O/Nafion/GCE), and N-doped graphene/Nafion modified electrode( NG/Nafion/GCE). Under optimal conditions, the peak current was found to be linearly proportional to the concentration of ofloxacin in the 0.5―27.5 μmol/L and 27.5―280 μmol/L ranges with a lower detection limit of 0.34 μmol/L, higher sensitivity of 39.32 μA·L·mmol–1 and a shorter reaction time of less than 2 s. In addition, Nafion can enhance the stability of the modified electrode and prevent some negative species. Thus the modified electrode exhibits good selectivity and a long working life. The Cu2O/NG/Nafion composite modified electrode shows promising application in electrochemical sensors, biosensors, and other related fields because of its excellent properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fierens C., Hillaert S., Bossche W. V., J. Pharm. Biomed. Anal., 2000, 22(5), 763

    Article  CAS  Google Scholar 

  2. Cheng G. W., Wu H. L., Huang Y. L., Anal. Chim. Acta, 2008, 616(2), 230

    Article  CAS  Google Scholar 

  3. Shao B., Sun X. J., Zhang J., Hu J. Y., Dong H. R., Yang Y., J. Chromatogr. A, 2008, 1182, 77

    Article  CAS  Google Scholar 

  4. Paul S. F., Jacqui L. A., Anal. Chim. Acta, 2005, 541, 3

    Article  Google Scholar 

  5. Garciía M. S., Albero M. I., Sánchez-Pedreño C., Abuherba M. S.. Eur. J. Pharm. Biopharm., 2005, 61, 87

    Article  Google Scholar 

  6. Huang K. J., Liu X., Xie W. Z., Yuan H. X., Colloids. Surf. B, 2008, 64(2), 269

    Article  CAS  Google Scholar 

  7. Zhang F. F., Gu S. Q., Ding Y. P., Li L., Liu X., Bioelectrochem., 2013, 89, 42

    Article  CAS  Google Scholar 

  8. Chen D., Tang L. H., Li J. H., Chem. Soc. Rev., 2010, 39, 3157

    Article  CAS  Google Scholar 

  9. Chen D., Feng H. B., Li J. H., Chem. Rev., 2012, 112, 6027

    Article  CAS  Google Scholar 

  10. Tang L. H., Wang Y., Li Y. M., Feng H. B., Lu J., Li J. H., Adv. Funct. Mater., 2009, 19, 2782

    Article  CAS  Google Scholar 

  11. Wang Y., Li Y. M., Tang L. H., Lu J., Li J. H., Electrochem. Commun., 2009, 11, 889

    Article  CAS  Google Scholar 

  12. Yang G. H., Li Y. J., Rana R. K., Zhu J. J., J. Mater. Chem. A, 2013, 1(5), 1754

    Article  CAS  Google Scholar 

  13. Briskman R. N., Sol. Energy Mater. Sol. Cells, 1992, 27(4), 361

    Article  CAS  Google Scholar 

  14. Wang M. Y., Huang J. R., Tong Z. W., Li W. H., Chen J. B., J. Alloys Compd., 2013, 568, 26

    Article  CAS  Google Scholar 

  15. Ye X. L., Gu Y., Wang C. M., Sens. Actuators B, 2012, 173, 530

    Article  CAS  Google Scholar 

  16. Yan X. Y., Tong X. L., Zhang Y. F., Han X. D., Wang Y. Y., Jin G. Q., Qin Y., Guo X. Y., Chem. Commun., 2012, 48(13), 1892

    Article  CAS  Google Scholar 

  17. Liu M. M., Liu R., Chen W., Biosens. Bioelectron., 2013, 45, 206

    Article  CAS  Google Scholar 

  18. Li J., Guo S. J., Zhai Y. M., Wang E. K., Anal. Chim. Acta, 2009, 649, 196

    Article  CAS  Google Scholar 

  19. Li X. L., Wang H. L., Robinson J. T., Sanchez H., Diankov G., Dai H. J., J. Am. Chem. Soc., 2009, 131, 15939

    Article  CAS  Google Scholar 

  20. Zen J. M., Chung H. H., Kumar A. S., Analyst, 2000, 125, 1633

    Article  CAS  Google Scholar 

  21. Huang K. J., Liu X., Xie W. Z., Yuan H. X., Microchim. Acta, 2008, 162(1/2), 227

    Article  CAS  Google Scholar 

  22. Laviron E., J. Electroanal. Chem., 1979, 101, 19

    Article  CAS  Google Scholar 

  23. Ding S. N., Xu J. J., Zhang W. J., Chen H. Y., Talanta, 2006, 70, 572

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fanghui Wu or Xianwen Wei.

Additional information

Supported by the National Natural Science Foundation of China(Nos.21071005, 21271006), the Natural Science Foundation of the Education Bureau of Anhui Province, China(No.KJ2015A024) and the Graduate Student Innovation Fund of Anhui University of Technology, China(No.2014033).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, F., Xu, F., Chen, L. et al. Cuprous oxide/nitrogen-doped graphene nanocomposites as electrochemical sensors for ofloxacin determination. Chem. Res. Chin. Univ. 32, 468–473 (2016). https://doi.org/10.1007/s40242-016-5367-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-016-5367-4

Keywords

Navigation