Skip to main content
Log in

A DFT, TDDFT and QTAIM study of the acridine pincer ligand-based Ru(II) and Rh(III) complexes: detailed analysis of the metal-F bonding

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

A series of acridine-based PNP and PNF pincer containing Ru and Rh transition metal complexes have been explored. A theoretical investigation has been performed to examine the electronic structure, absorption and possible remote interaction of the fluorine atom connected to the acridine ligand with the metal centre employing DFT and TDDFT calculation. Bader’s Atoms in Molecules Theory is additionally applied for the studied complexes to evaluate the bonding nature between metal and F. For all the studied complexes, the LUMOs mainly consist of the acridine π* orbitals. HOMOs primarily consist of metal d orbitals. On that account, a metal-to-ligand charge transfer transition is possible in these complexes. The analysis of UV–Vis absorption spectra demonstrates how attached ligands affect electronic transitions. All of the complexes display two main transitions. The lowest energy band is due to the HOMO–LUMO MLCT transition between metal d orbitals and acridine π* orbitals. The topological analysis demonstrates a strong interaction between the metal atom and the F atom. Even so, positive Laplacian of electron density observed at the bond critical point between metal and F denied the possibility of covalent-type interaction.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • An B, Feng S, Wen K, Wu W, Yuan H, Zhu Q, Guo X, Zhang J (2017) Theoretical insights into the ultrafast excited-state intramolecular proton transfer (ESIPT) mechanism in a series of amide-based NH⋯N hydrogen-bonding compounds. Org Electron 45:1–8

    Article  CAS  Google Scholar 

  • Arashiba K, Miyake Y, Nishibayashi Y (2011) A molybdenum complex bearing PNP-type pincer ligands leads to the catalytic reduction of dinitrogen into ammonia. Nat Chem 3(2):120–125

    Article  CAS  Google Scholar 

  • Awada A, Moreno-Betancourt A, Philouze C, Moreau Y, Jouvenot D, Loiseau F (2018) New Acridine-Based tridentate ligand for Ruthenium(II): Coordination with a twist. Inorg Chem 57(24):15430–15437

    Article  CAS  Google Scholar 

  • Ayala R, Galindo A (2019) A QTAIM and DFT study of the dizinc bond in non-symmetric [CpZn2Ln] complexes. J Organomet Chem 898:120878

    Article  Google Scholar 

  • Bine FK, Nkungli NK, Numbonui TS, Numbonui Ghogomu J (2018) Structural properties and reactive site selectivity of some transition metal complexes of 2,2′(1E,1′E)-(ethane-1,2-diylbis(azan-1-yl-1-ylidene))bis(phenylmethan-1-yl-1-ylidene)dibenzoic Acid: DFT, conceptual DFT, QTAIM, and MEP studies. Bioinorg Chem Appl 2018:4510648

    Article  Google Scholar 

  • Bootsma J, Guo B, de Vries JG, Otten E (2020) Ruthenium complexes with PNN pincer ligands based on (Chiral) pyrrolidines: synthesis, structure, and dynamic stereochemistry. Organometallics 39(4):544–555

    Article  CAS  Google Scholar 

  • Buschmann H-J, Hermann J, Kaupp M, Plenio H (1999) The coordination chemistry of the CF group of fluorocarbons: thermodynamic data and Ab initio calculations on CF-metal ion interactions. Chem : a European J 5(9):2566–2572

    Article  CAS  Google Scholar 

  • Cao J, Zhou Y (2017) Excited state relaxation processes of H2-evolving Ru-Pd supramolecular photocatalysts containing a linear or non-linear bridge: a DFT and TDDFT study. Phys Chem Chem Phys 19(18):11529–11539

    Article  CAS  Google Scholar 

  • Catala RM, Cruz-Garritz D, Sosa P, Terreros P, Torrens H, Hills A, Hughes DL, Richards RL (1989) Ruthenium-X-carbon (X = F or H) interactions in complex compounds. preparation and crystal structures of [cyclic] [Ru[SC6F4(F-2)](SC6F5)2(PMe2PhH)2] and [cyclic] [Ru(SC6F5)2[PC6H4(H-2)(C6H5)2]2]. J Organomet Chem 359(2):219–232

    Article  CAS  Google Scholar 

  • Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10(44):6615–6620

    Article  CAS  Google Scholar 

  • Clot E, Eisenstein O, Jasim N, Macgregor SA, McGrady JE, Perutz RN (2011) C−F and C−H bond activation of fluorobenzenes and fluoropyridines at transition metal centers: How fluorine tips the scales. Acc Chem Res 44(5):333–348

    Article  CAS  Google Scholar 

  • Doherty NM, Hoffmann NW (1991) Transition-metal fluoro compounds containing carbonyl, phosphine, arsine, and stibine ligands. Chem Rev 91(4):553–573

    Article  CAS  Google Scholar 

  • Doro FG, Ferreira KQ, da Rocha ZN, Caramori GF, Gomes AJ, Tfouni E (2016) The versatile ruthenium(II/III) tetraazamacrocycle complexes and their nitrosyl derivatives. Coord Chem Rev 306(2):652–677

    Article  CAS  Google Scholar 

  • Fantacci S, De Angelis F, Sgamellotti A, Re N (2004) A TDDFT study of the ruthenium(II) polyazaaromatic complex [Ru(dppz)(phen)2]2+ in solution. Chem Phys Lett 396(1–3):43–48

    Article  CAS  Google Scholar 

  • Fleckhaus A, Mousa AH, Lawal NS, Kazemifar NK, Wendt OF (2015) Aromatic PCN palladium pincer complexes. probing the hemilability through reactions with nucleophiles. Organometallics 34(9):1627–1634

    Article  CAS  Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel GW, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery VG Jr., Peralta JE, Ogliaro F, Bearpark JE, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016). Gaussian 16 Rev. C01 Wallingford, CT

  • Fuchs E, Egen M, Kahle K, Lennartz C, Molt O, Nord S, Kowalsky W, Schildknecht C, Johannes H-H (2007) Heteroleptic cyclometalated transition metal-carbene complexes containing at least two differently substituted N-heterocyclic carbene ligands and their use in organic light-emitting diodes (OLEDS). BASF Aktiengesellschaft, Germany, p 88

    Google Scholar 

  • Funasako Y, Kaneshige K, Inokuchi M, Hosokawa H, Mochida T (2015) Ionic liquids containing cationic SNS-pincer palladium(II) complexes: Effects of ancillary ligands on thermal properties and solvent polarities. J Organomet Chem 797:120–124

    Article  CAS  Google Scholar 

  • Gao Y, Yip JHK (2019) Selective Hypochlorous Acid Detection by Electronic Tuning of Platinum-4,5-bis(diphenylphosphino)acridine-Thiolate Complexes. Inorg Chem 58(14):9290–9302

    Article  CAS  Google Scholar 

  • Gao X, Shi S, Yao J-L, Zhao J, Yao T-M (2015) Impacts of terminal modification of [Ru(phen)2d ppz]2+ on the luminescence properties: a theoretical study. Dalton Trans 44(44):19264–19274

    Article  CAS  Google Scholar 

  • Ghosh B, Naskar S, Naskar S, Espinosa A, Hau SCK, Mak TCW, Sekiya R, Kuroda R, Chattopadhyay SK (2014) Heteroleptic Ru(II) complexes containing aroyl hydrazone and 2,2’-bipyridyl: synthesis, X-ray crystal structures, electrochemical and DFT studies. Polyhedron 72:115–121

    Article  CAS  Google Scholar 

  • Granados JAO, Hernandez JG, Huerta-Aguilar CA, Thangarasu P (2018) Exploration of ruthenium complex of (E)-2-((pyridine-2-yl)methyleneamino) benzoic acid as chemosensor for simultaneous recognition of acetate and HSO4- ions in cell bio-imaging: Experimental and theoretical studies. Sens Actuators B-Chem 270:570–581

    Article  CAS  Google Scholar 

  • Guadalupe Hernández J, Thangarasu P (2021) A critical evaluation of [ML(ONO)]n+ (M = Fe, Ru, Os) as nitric oxide precursor influenced by spin multiplicity and geometrical parameters (M-O-NO and MO-N-O) for the NO release: A theoretical study. Inorg Chim Acta 527:120584

    Article  Google Scholar 

  • Gunanathan C, Gnanaprakasam B, Iron MA, Shimon LJW, Milstein D (2010) “Long-Range” metal−ligand cooperation in H2 activation and ammonia-promoted hydride transfer with a Ruthenium−Acridine pincer complex. J Am Chem Soc 132(42):14763–14765

    Article  CAS  Google Scholar 

  • Hernandez JG, Thangarasu P, Hopfl H, Cruz J, Serrano-Ruiz M, Romerosa A (2015) Ruthenium(II) complexes containing benzimidazolic tripodal ligands. Inorg Chim Acta 431:258–265

    Article  Google Scholar 

  • Hernandez JG, Narayanan J, Hernandez EG, Thangarasu P (2021) Understanding of [RuL(ONO)]n+ acting as nitric oxide precursor, a theoretical study of ruthenium complexes of 1,4,8,11-tetraazacyclo- tetradecane having different substituents: How spin multiplicity influences bond angle and bond lengths (Ru-O-NO) in releasing of NO. J Inorg Biochem. https://doi.org/10.1016/j.jinorgbio.2021.111406

    Article  Google Scholar 

  • Hernández-Hernández J, Huerta Aguilar CA, Thangarasu P, Hernández-Trujillo J (2019) Photochemical and antibacterial properties of ruthenium complex of N, N´-bis(benzimidazole-2yl-ethyl)ethylene-diamine under visible light: Experimental and theoretical studies. J Mol Struct 1203:127377

    Article  Google Scholar 

  • Himmelbauer D, Mastalir M, Stoeger B, Veiros LF, Kirchner K (2018) Synthesis and reactivity of group six metal PCP pincer complexes: reversible CO addition across the metal-caryl bond. Organometallics 37(20):3631–3638

    Article  CAS  Google Scholar 

  • Hughes RP (1990) Organo-Transition metal compounds containing perfluorinated ligands. advances in organometallic chemistry. F. G. A. stone and R. West, Academic Press 31:183–267. https://doi.org/10.1016/S0065-3055(08)60511-0

    Article  CAS  Google Scholar 

  • Karaush NN, Baryshnikov GV, Minaeva VA, Minaev BF (2015) A DFT and QTAIM study of the novel d-block metal complexes with tetraoxa[8]circulene-based ligands. New J Chem 39(10):7815–7821

    Article  CAS  Google Scholar 

  • Kendall RA, Dunning TH, Harrison RJ (1992) Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J Chem Phys 96(9):6796–6806

    Article  CAS  Google Scholar 

  • Kiplinger JL, Richmond TG, Osterberg CE (1994) Activation of Carbon-Fluorine bonds by Metal Complexes. Chem Rev 94(2):373–431

    Article  CAS  Google Scholar 

  • Kulawiec RJ, Crabtree RH (1990) Coordination chemistry of halocarbons. Coord Chem Rev 99:89–115

    Article  CAS  Google Scholar 

  • Kulawiec RJ, Holt EM, Lavin M, Crabtree RH (1987) Chelation of a carbon-fluorine bond to iridium in an 8-fluoroquinoline complex. Inorg Chem 26(15):2559–2561

    Article  CAS  Google Scholar 

  • Kupfer S, Guthmuller J, Wächtler M, Losse S, Rau S, Dietzek B, Popp J, González L (2011) Protonation effects on the resonance Raman properties of a novel (terpyridine)Ru(4H-imidazole) complex: an experimental and theoretical case study. Phys Chem Chem Phys 13(34):15580–15588

    Article  CAS  Google Scholar 

  • Lawrence MAW, Green K-A, Nelson PN, Lorraine SC (2018) Review: Pincer ligands—Tunable, versatile and applicable. Polyhedron 143:11–27

    Article  CAS  Google Scholar 

  • Le L, Liu J, He T, Kim D, Lindley EJ, Cervarich TN, Malek JC, Pham J, Buck MR, Chianese AR (2018) Structure-Function Relationship in Ester Hydrogenation Catalyzed by Ruthenium CNN-Pincer Complexes. Organometallics 37(19):3286–3297

    Article  CAS  Google Scholar 

  • Li Y, Fan X-W, Wang J, Kong C-P, Chen J, Wang S-P, Li H-C, Bai F-Q, Zhang H-X (2020a) Comparative study on the photophysical properties between carbene-based Fe (II) and Ru (II) complexes. Appl Organomet Chem 34(10):e5821

    Article  CAS  Google Scholar 

  • Li Y, Fan XW, Wang J, Kong CP, Chen J, Wang SP, Li HC, Bai FQ, Zhang HX (2020b) "Comparative study on the photophysical properties between carbene-based Fe (II) and Ru (II) complexes. Appl Organomet Chem. https://doi.org/10.1002/aoc.5821

    Article  Google Scholar 

  • Liu C-S, Chen P-Q, Yang E-C, Tian J-L, Bu X-H, Li Z-M, Sun H-W, Lin Z (2006) Silver(I) complexes in coordination supramolecular system with bulky acridine-based ligands: syntheses, crystal structures, and theoretical investigations on C−H···Ag Close Interaction. Inorg Chem 45(15):5812–5821

    Article  CAS  Google Scholar 

  • Lobello MG, De Angelis F, Fantacci S (2014) A computational approach to the electronic, optical and acid-base properties of Ru(II) dyes for photoelectrochemical solar cells applications. Polyhedron 82:88–103

    Article  CAS  Google Scholar 

  • Lu T, Chen F (2012) Multiwfn: A multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592

    Article  Google Scholar 

  • Malthus SJ, Wilson RK, Larsen DS, Brooker S (2016) Acridine-based ligands from cobalt(II) mediated rearrangement of diphenylamine-based starting materials. Supramol Chem 28(1–2):98–107

    Article  CAS  Google Scholar 

  • Martynow M, Kupfer S, Rau S, Guthmuller J (2019) Excited state properties of a series of molecular photocatalysts investigated by time dependent density functional theory. Phys Chem Chem Phys 21(18):9052–9060

    Article  CAS  Google Scholar 

  • Matsheku AC, Chen MYH, Jordaan S, Prince S, Smith GS, Makhubela BCE (2017) Acridine-containing RuII OsII, RhIII and IrIII half-sandwich complexes: synthesis, structure and antiproliferative activity. Appl Organomet Chem 31(12):3852

    Article  Google Scholar 

  • May A, Ouddai N (2012a) Topological analysis of the bonding in [Ru5(μ4-C2)L(CO)13] and [Ru4(μ4-C2)L(CO)10] complexes (L = (μ-SMe)(μ-PPh2)2). J Struct Chem 53(2):220–227

    Article  CAS  Google Scholar 

  • Molt O, Fuchs E, Lennartz C, Kahle K, Moonen N, Schildknecht C, Rudolph J (2007) Transition metal cyclometalated heteroleptic carbene complexes containing non-carbene heterocyclic ligands as phosphorescent substances for organic electroluminescent devices (OLEDs). BASF Aktiengesellschaft, Germany, p 78

    Google Scholar 

  • Murray-Rust P, Stallings WC, Monti CT, Preston RK, Glusker JP (1983) Intermolecular interactions of the carbon-fluorine bond: the crystallographic environment of fluorinated carboxylic acids and related structures. J Am Chem Soc 105(10):3206–3214

    Article  CAS  Google Scholar 

  • Neese F (2009) Prediction of molecular properties and molecular spectroscopy with density functional theory: From fundamental theory to exchange-coupling. Coord Chem Rev 253(5):526–563

    Article  CAS  Google Scholar 

  • Nguyen VH, Chew HQ, Su B, Yip JHK (2014) Synthesis and spectroscopy of anionic cyclometalated iridium(iii)-dithiolate and -sulfinates-effect of sulfur dioxygenation on electronic structure and luminescence. Inorg Chem 53(18):9739–9750

    Article  CAS  Google Scholar 

  • Nguyen VH, Khoo RSH, Yip JHK (2015) Ir(2-Phenylpyridine)2(benzene-1,2-dithiolate) Anion as a diastereoselective metalloligand and nucleophile: stereoelectronic effect, spectroscopy, and computational study of the methylated and aurated complexes and their oxygenation products. Inorg Chem 54(5):2264–2277

    Article  CAS  Google Scholar 

  • Nguyen VH, Kandasamy B, Yip JHK (2018) Coupling d6 Ir(III) and d8 Pt(II) chromophores. Inorg Chem 57(8):4699–4718

    Article  CAS  Google Scholar 

  • O’Hagan D (2008) Understanding organofluorine chemistry. An introduction to the C-F bond. Chem Soc Rev 37(2):308–319

    Article  CAS  Google Scholar 

  • Otlyotov AA IV, Ryzhov IAK, Zhabanov YA, Mikhailov MS, Stuzhin PA (2020) DFT study of molecular and electronic structure of Ca(II) and Zn(II) complexes with porphyrazine and tetrakis(1,2,5-thiadiazole)porphyrazine. Int J Mol Sci 21(8):2923

    Article  CAS  Google Scholar 

  • Ozerov OV, Guo C, Papkov VA, Foxman BM (2004) Facile oxidative addition of N−C and N−H bonds to monovalent rhodium and Iridium. J Am Chem Soc 126(15):4792–4793

    Article  CAS  Google Scholar 

  • Pal S, Joy S, Paul H, Banerjee S, Maji A, Zangrando E, Chattopadhyay P (2017) Understanding the difference in photophysical properties of cyclometalated iridium(III) and Rhodium(III) Complexes by Detailed Time-Dependent Density Functional Theory and Frontier Molecular Orbital Supports. J Phys Chem C 121(21):11632–11642

    Article  CAS  Google Scholar 

  • Pallewela GN, Bettens RPA (2021) Theoretical investigation of impact sensitivity of nitrogen rich energetic salts. Comput Theor Chem 1201:113267

    Article  CAS  Google Scholar 

  • Pineda LH, Tecuapa-Flores ED, Hernandez JG, Thangarasu P, Ramos JMV (2021) Ruthenium complex of bis(benzimidazole-yl-ethyl)sulfide as chemo-sensor for selective recognition of chloride ion, and its application in real bacterial samples. Inorg Chimica ACTA 522:120354

    Article  CAS  Google Scholar 

  • Qi S-C, J-i Hayashi L, Zhang, (2016) Recent application of calculations of metal complexes based on density functional theory. RSC Adv 6(81):77375–77395

    Article  CAS  Google Scholar 

  • Ragini DR, Chang S, Lyu Y-Y, Han E-S, Byun Y-H, Pu L-S, Lee J-H (2006) Cyclometalated transition metal complexes and organic electroluminescent devices using the cyclometalated transition metal complexes. Samsung SDI Co Ltd S, Korea, p 26

    Google Scholar 

  • Rajpurohit J, Shukla P, Kumar P, Das C, Vaidya S, Sundararajan M, Shanmugam M, Shanmugam M (2019) Stabilizing terminal Ni(III)-hydroxide complex using nnn-pincer ligands: synthesis and characterization. Inorg Chem 58(9):6257–6267

    Article  CAS  Google Scholar 

  • Ritter T, Day MW, Grubbs RH (2006) Rate acceleration in olefin metathesis through a fluorine−ruthenium interaction. J Am Chem Soc 128(36):11768–11769

    Article  CAS  Google Scholar 

  • Rohrdanz MA, Martins KM, Herbert JM (2009) "A long-range-corrected density functional that performs well for both ground-state properties and time-dependent density functional theory excitation energies, including charge-transfer excited states. J Chem Phys 130(5):054112

    Article  Google Scholar 

  • Scharf A, Goldberg I, Vigalok A (2013) Evidence for metal-ligand cooperation in a Pd–PNF pincer-catalyzed cross-coupling. J Am Chem Soc 135(3):967–970

    Article  CAS  Google Scholar 

  • Smith NA, Sadler PJ (2013) Photoactivatable metal complexes: from theory to applications in biotechnology and medicine. Philos Trans R Soc A 371(1995):2012

    Article  Google Scholar 

  • Stasyuk AJ, Cyrański MK, Gryko DT, Solà M (2015) Acidic C-H bond as a proton donor in excited state intramolecular proton transfer reactions. J Chem Theory Comput 11(3):1046–1054

    Article  CAS  Google Scholar 

  • Tsipis AC (2014) DFT flavor of coordination chemistry. Coord Chem Rev 272:1–29

    Article  CAS  Google Scholar 

  • Vogt M, Langer R (2020) The pincer platform beyond classical coordination patterns. Eur J Inorg Chem 2020(41):3885–3898

    Article  CAS  Google Scholar 

  • Wächtler M, Kupfer S, Guthmuller J, Popp J, González L, Dietzek B (2011) Influence of multiple protonation on the initial excitation in a black dye. J Phy Chem C 115(48):24004–24012

    Article  Google Scholar 

  • Walid S, Hassan WMI, Gros PC, Allam NK (2016a) Design and synthesis of new Ru-complexes as potential photo-sensitizers: experimental and TD-DFT insights. RSC Adv 6(73):69647–69657

    Article  Google Scholar 

  • Wang Y, Ang PL, Wong C-Y, Yip JHK (2018) Gold-clip-assisted self-assembly and proton-coupled expansion-contraction of a cofacial feiii-porphyrin cage. Chem - Eur J 24(70):18623–18628

    Article  CAS  Google Scholar 

  • Weigend F (2006) Accurate coulomb-fitting basis sets for H to Rn. Phys Chem Chem Phys 8(9):1057–1065

    Article  CAS  Google Scholar 

  • Xamonaki N, Asimakopoulos A, Balafas A, Dasenaki M, Choinopoulos I, Coco S, Simandiras E, Koinis S (2016) Tetrathiomolybdate complexes of Rhodium(i) with molybdenum-Rhodium interactions. Inorg Chem 55(10):4771–4781

    Article  CAS  Google Scholar 

  • Xie Y, Ben-David Y, Shimon LJW, Milstein D (2016) Highly efficient process for production of biofuel from ethanol catalyzed by ruthenium pincer complexes. J Am Chem Soc 138(29):9077–9080

    Article  CAS  Google Scholar 

  • Yang Y, Zhao Q, Feng W, Li F (2013) Luminescent Chemodosimeters for bioimaging. Chem Rev (washington, DC, U s) 113(1):192–270

    Article  CAS  Google Scholar 

  • Yang Y, Liao G, Fu C (2018) Recent Advances on Octahedral Polypyridyl Ruthenium(II) Complexes as Antimicrobial Agents. Polymers 10(6):650

    Article  Google Scholar 

  • Yifei G (2019) Acridine pincer complexes-Structual. National University of Singapore, Photophysical stdy and application as fluorescent probes. Ph.D.

    Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the MOE ARC grant R-143-000-A47- 114. The authors also thank the High Performance Computing services at the National University of Singapore (NUS) Computer Centre for the computational resources. Furthermore, the authors like to express their deepest gratitude to Prof. John Hon Kay Yip at National University of Singapore for suggesting the structures used in this study.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Gayani N. Pallewela.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3938 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pallewela, G.N., Bettens, R.P.A. A DFT, TDDFT and QTAIM study of the acridine pincer ligand-based Ru(II) and Rh(III) complexes: detailed analysis of the metal-F bonding. Chem. Pap. 77, 47–61 (2023). https://doi.org/10.1007/s11696-022-02340-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-022-02340-8

Keywords

Navigation