Skip to main content
Log in

DFT and TDDFT exploration on electronic transitions and bonding aspect of DPA and PTDC ligated transition metal complexes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

In this study, we have investigated the structure, reactivity, bonding, and electronic transitions of DPA and PDTC along with their Ni-Zn complexes using DFT/TD-DFT methods. The energy gap between the frontier orbitals was computed to understand the reactivity pattern of the ligands and metal complexes. From the energies of FMO’s, the global reactivity descriptors such as electron affinity, ionization potential, hardness (η), softness (S), chemical potential (μ), electronegativity (χ), and electrophilicity index (ω) have been calculated. The complexes show a strong NLO properties due to easily polarization as indicated by the narrow HOMO–LUMO gap. The polarizability and hyperpolarizabilities of the complexes indicate that they are good candidates for NLO materials. Molecular electrostatic potential (MEP) maps identified electrophilic and nucleophilic sites on the surfaces of the complexes. TDDFT and NBO analyses provided insights into electronic transitions, bonding, and stabilizing interactions within the studied complexes. DPA and PDTC exhibited larger HOMO–LUMO gaps and more negative electrostatic potentials compared to their metal complexes suggesting the higher reactivity. Ligands (DPA and PDTC) had absorption spectra in the range of 250 nm to 285 nm while their complexes spanned 250 nm to 870 nm. These bands offer valuable information on electronic transitions, charge transfer and optical behavior. This work enhances our understanding of the electronic structure and optical properties of these complexes.

Methods

Gaussian16 program was used for the optimization of all the compounds. B3LYP functional in combination with basis sets, such as LanL2DZ for Zn, Ni and Cu while 6-311G** for other atoms like C, H, O, N, and S was used. Natural bond orbital (NBO) analysis is carried out to find out how the filled orbital of one sub-system interacts with the empty orbital of another sub-system. The ORCA software is used for computing spectral features along with the zeroth order regular approximation method (ZORA) to observe its relativistic effects. TD-DFT study is carried out to calculate the excitation energy by using B3LYP functional.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Haas KL, Franz KJ (2009) Application of Metal Coordination Chemistry to Explore and Manipulate Cell Biology. Chem Rev 109:4921–4960. https://doi.org/10.1021/cr900134a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Garin AB, Rakarić D, Andrić EK et al (2019) Synthesis of monosubstituted dipicolinic acid hydrazide derivative and structural characterization of novel Co(III) and Cr(III) complexes. Polyhedron 166:226–232. https://doi.org/10.1016/j.poly.2019.03.059

    Article  CAS  Google Scholar 

  3. Arabieh M, Iglesias CP (2016) A density functional theory study on the interaction of dipicolinic acid with hydrated Fe2+ cation. Comput Theor Chem 1090:134–146. https://doi.org/10.1016/j.comptc.2016.06.010

    Article  CAS  Google Scholar 

  4. Tamer Ö, Sarıboğa B, Uçar İ, Büyükgüngör O (2011) Spectroscopic characterization, X-ray structure, antimicrobial activity and DFT calculations of novel dipicolinate copper(II) complex with 2,6-pyridinedimethanol. Spectrochim Acta A Mol Biomol Spectrosc 84:168–177. https://doi.org/10.1016/j.saa.2011.09.025

    Article  CAS  PubMed  Google Scholar 

  5. Das B, Baruah JB (2010) Coordinated cations in dipicolinato complexes of divalent metal ions. Inorganica Chim Acta 363:1479–1487. https://doi.org/10.1016/j.ica.2010.01.025

    Article  CAS  Google Scholar 

  6. Ghosh SK, Ribas J, Bharadwaj PK (2004) Metal–organic framework structures of Cu(ii) with pyridine-2,6-dicarboxylate and different spacers: identification of a metal bound acyclic water tetramer. CrystEngComm 6:250–256. https://doi.org/10.1039/b407571d

    Article  CAS  Google Scholar 

  7. Naik JL, Reddy BV, Prabavathi N (2015) Experimental (FTIR and FT-Raman) and theoretical investigation of some pyridine-dicarboxylic acids. J Mol Struct 1100:43–58. https://doi.org/10.1016/j.molstruc.2015.06.064

    Article  CAS  Google Scholar 

  8. Mirzaei M, Eshtiagh-Hosseini H, Karrabi Z et al (2014) Crystal engineering with coordination compounds of NiII, CoII, and CrIII bearing dipicolinic acid driven by the nature of the noncovalent interactions. CrystEngComm 16:5352. https://doi.org/10.1039/c4ce00325j

    Article  CAS  Google Scholar 

  9. Kirillova MV, Guedes da Silva MFC, Kirillov AM et al (2007) 3D hydrogen bonded heteronuclear CoII, NiII, CuII and ZnII aqua complexes derived from dipicolinic acid. Inorganica Chim Acta 360:506–512. https://doi.org/10.1016/j.ica.2006.07.087

    Article  CAS  Google Scholar 

  10. Prasad TK, Rajasekharan MV (2010) Heterometallic coordination compounds of dipicolinic acid with Ce(III, IV) and Cu(II): Synthesis, crystal structure and spectral studies. Inorganica Chim Acta 363:2971–2976. https://doi.org/10.1016/j.ica.2010.03.070

    Article  CAS  Google Scholar 

  11. Ay B, Doğan N, Yildiz E, Kani İ (2015) A novel three dimensional samarium(III) coordination polymer with an unprecedented coordination mode of the 2,5-pyridinedicarboxylic acid ligand: Hydrothermal synthesis, crystal structure and luminescence property. Polyhedron 88:176–181. https://doi.org/10.1016/j.poly.2014.12.035

    Article  CAS  Google Scholar 

  12. Zhao D, Liu X-H, Zhao Y et al (2017) Luminescent Cd(ii)–organic frameworks with chelating NH2 sites for selective detection of Fe(iii) and antibiotics. J Mater Chem A 5:15797–15807. https://doi.org/10.1039/c7ta03849f

    Article  CAS  Google Scholar 

  13. Grossel MC, Golden CA, Gomm JR et al (2001) Solid-state behaviour of pyridine-2,6-dicarboxylate esters: supramolecular assembly into infinite tapes. CrystEngComm 3:170–170. https://doi.org/10.1039/b107221h

    Article  CAS  Google Scholar 

  14. Cui GH, He CH, Jiao CH et al (2012) Two metal–organic frameworks with unique high-connected binodal network topologies: synthesis, structures, and catalytic properties. CrystEngComm 14:4210. https://doi.org/10.1039/c2ce25264c

    Article  CAS  Google Scholar 

  15. Huang YG, Jiang FL, Hong MC (2009) Magnetic lanthanide–transition-metal organic–inorganic hybrid materials: From discrete clusters to extended frameworks. Coord Chem Rev 253:2814–2834. https://doi.org/10.1016/j.ccr.2009.05.007

    Article  CAS  Google Scholar 

  16. Kukovec BM, Venter GA, Oliver CL (2011) Structural and DFT Studies on the Polymorphism of a Cadmium(II) Dipicolinate Coordination Polymer. Cryst Growth Des 12:456–465. https://doi.org/10.1021/cg201285g

    Article  CAS  Google Scholar 

  17. Parveen M, Ghalib RM, Alam M, Singh M (2013) Isolation, characterization and X-ray analysis of Peltophorin from the leaves of Peltophorum vogelianum (Benth.). J Saudi Chem Soc 17:303–305. https://doi.org/10.1016/j.jscs.2011.04.011

    Article  CAS  Google Scholar 

  18. Alam M, Park S (2019) Spectroscopic Identifications, Molecular Docking, Neuronal Growth and Enzyme Inhibitory Activities of Steroidal Nitro Olefin: Quantum Chemical Study. ChemistrySelect 4:12062–12075. https://doi.org/10.1002/slct.201902093

    Article  CAS  Google Scholar 

  19. Groves JT, Kady IO (1993) Sequence-specific cleavage of DNA by oligonucleotide-bound metal complexes. Inorg Chem 32:3868–3872. https://doi.org/10.1021/ic00070a017

    Article  CAS  Google Scholar 

  20. Yenikaya C, Büyükkidan N, Sari M et al (2011) Synthesis, characterization, and biological evaluation of Cu(II) complexes with the proton transfer salt of 2,6-pyridinedicarboxylic acid and 2-amino-4-methylpyridine. J Coord Chem 64:3353–3365. https://doi.org/10.1080/00958972.2011.620608

    Article  CAS  Google Scholar 

  21. Demir S, Çepni HM, Hołyńska M et al (2017) Copper(II) complexes with pyridine-2,6-dicarboxylic acid from the oxidation of copper(I) iodide. J Coord Chem 70:3422–3433. https://doi.org/10.1080/00958972.2017.1393071

    Article  CAS  Google Scholar 

  22. Ren Y, He W, Chen W (2022) A novel Cd (II) coordination polymer of highly sensitive sensing for antibiotics in aqueous medium. Polyhedron 221:115827. https://doi.org/10.1016/j.poly.2022.115827

    Article  CAS  Google Scholar 

  23. Moschovitis K, Banti CN, Kourkoumelis N et al (2020) Fluorescence of copper(I) and mixed valence copper(I/II) complexes with dipicolinic acid and their catalytic activity on catechol oxidation. Inorganica Chim Acta 500:119209–119209. https://doi.org/10.1016/j.ica.2019.119209

    Article  CAS  Google Scholar 

  24. Kumar SP, Kumar BS, Azam M (2022) Transition metal complexes produced from dipicolinic acid: synthesis, structural characterization, and anti-microbial investigations. Bull Chem Soc Ethio 36:607–615. https://doi.org/10.4314/bcse.v36i3.10

    Article  CAS  Google Scholar 

  25. Derikvand Z, Azadbakht A, Rudbari HA (2018) Synthesis, Characterization, Crystal Structure and Supramolecular Interactions of a New Ni(II) Compound Based on l-Histidine and Dipicolinic Acid; New Solid State Precursor for NiO Nanoparticles and Its Catalytic Activity for Nitrophenol Reduction. J Inorg Organomet Polym Mater 29:502–516. https://doi.org/10.1007/s10904-018-1022-5

    Article  CAS  Google Scholar 

  26. Grote J, Friedrich F, Berthold K et al (2018) Dithiocarboxylic Acids: An Old Theme Revisited and Augmented by New Preparative, Spectroscopic and Structural Facts. Chem Eur J 24:2626–2633. https://doi.org/10.1002/chem.201704235

    Article  CAS  PubMed  Google Scholar 

  27. Dong LB, Rudolf JD, Kang D et al (2018) Biosynthesis of thiocarboxylic acid-containing natural products. Nat Commun 9:2362. https://doi.org/10.1038/s41467-018-04747-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Thomas CS, Braun DC, Olmos JL et al (2020) Pyridine-2,6-Dithiocarboxylic Acid and Its Metal Complexes: New Inhibitors of New Delhi Metallo -Lactamase-1. Mar Drugs 18:295–295. https://doi.org/10.3390/md18060295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ahmed AJ (2018) Metal Complexes of Dithiocarbamate Derivatives and its Biological Activity. Asian J Chem 30:2595–2602. https://doi.org/10.14233/ajchem.2018.21545

    Article  CAS  Google Scholar 

  30. Yao ZJ, Jin GX (2013) Transition metal complexes based on carboranyl ligands containing N, P, and S donors: Synthesis, reactivity and applications. Coord Chem Rev 257:2522–2535. https://doi.org/10.1016/j.ccr.2013.02.004

    Article  CAS  Google Scholar 

  31. Abu-Dief AM, Mohamed IMA (2015) A review on versatile applications of transition metal complexes incorporating Schiff bases. Beni-Suef Univ J Basic Appl Sci 4:119–133. https://doi.org/10.1016/j.bjbas.2015.05.004

    Article  PubMed  PubMed Central  Google Scholar 

  32. Khare E, Andersen NH, Buehler MJ (2021) Transition-metal coordinate bonds for bioinspired macromolecules with tunable mechanical properties. Nat Rev Materials 6:421–436. https://doi.org/10.1038/s41578-020-00270-z

    Article  CAS  Google Scholar 

  33. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H , Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, and Pople JA (2016) Gaussian 16, Revision A.03, Gaussian, Inc., Wallingford CT

  34. Becke AD (1992) Density-functional thermochemistry. I. The effect of the exchange-only gradient correction. J Chem Phys 96:2155–2160. https://doi.org/10.1063/1.462066

    Article  CAS  Google Scholar 

  35. Hirao H, Kumar D, Que L, Shaik S (2006) Two-State Reactivity in Alkane Hydroxylation by Non-Heme Iron−Oxo Complexes. J Am Chem Soc 128:8590–8606. https://doi.org/10.1021/ja061609o

    Article  CAS  PubMed  Google Scholar 

  36. Bathelt CM, Zurek J, Mulholland AJ, Harvey JN (2005) Electronic Structure of Compound I in Human Isoforms of Cytochrome P450 from QM/MM Modeling. J Am Chem Soc 127:12900–12908. https://doi.org/10.1021/ja0520924

    Article  CAS  PubMed  Google Scholar 

  37. Siegbahn PEM, Borowski T (2006) Modeling Enzymatic Reactions Involving Transition Metals. Acc Chem Res 39:729–738. https://doi.org/10.1021/ar050123u

    Article  CAS  PubMed  Google Scholar 

  38. Ditchfield R, Hehre WJ, Pople JA (1971) Self-consistent molecular-orbital methods. IX. An extended gaussian-type basis for molecular-orbital studies of organic molecules. J Chem Phys 54:724–728. https://doi.org/10.1063/1.1674902

    Article  CAS  Google Scholar 

  39. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270–283. https://doi.org/10.1063/1.448799

    Article  CAS  Google Scholar 

  40. Wadt WR, Hay PJ (1985) Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J Chem Phys 82:284–298. https://doi.org/10.1063/1.448800

    Article  CAS  Google Scholar 

  41. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys 82:299–310. https://doi.org/10.1063/1.448975

    Article  CAS  Google Scholar 

  42. Avci D (2011) Second and third-order nonlinear optical properties and molecular parameters of azo chromophores: Semiempirical analysis. Spectrochim Acta A Mol Biomol Spectrosc 82:37–43. https://doi.org/10.1016/j.saa.2011.06.037

    Article  CAS  PubMed  Google Scholar 

  43. Avci D, Başoğlu A, Atalay Y (2009) Ab initio HF and DFT calculations on an organic non-linear optical material. Struct Chem 21:213–219. https://doi.org/10.1007/s11224-009-9566-1

    Article  CAS  Google Scholar 

  44. Neese F (2017) Software update: the ORCA program system, version 4.0. WIREs Comput Mol Sci 8:e1327. https://doi.org/10.1002/wcms.1327

    Article  Google Scholar 

  45. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  46. Tenderholt, Adam L QMForge: A Program to Analyze Quantum Chemistry Calculations, Version 3.2, https://qmforge.net

  47. Chen YW, Chen KL, Chen CH et al (2010) Pyrrolidine dithiocarbamate (PDTC)/Cu complex induces lung epithelial cell apoptosis through mitochondria and ER-stress pathways. Toxicol Lett 199:333–340. https://doi.org/10.1016/j.toxlet.2010.09.016

    Article  CAS  PubMed  Google Scholar 

  48. Islam SKI, Das SB, Chakrabarty S et al (2016) Synthesis, Characterization, and Biological Activity of Nickel (II) and Palladium (II) Complex with Pyrrolidine Dithiocarbamate (PDTC). Adv chem 2016:1–6. https://doi.org/10.1155/2016/4676524

    Article  CAS  Google Scholar 

  49. Dou C, Ding Z, Zhang Z et al (2015) Developing Conjugated Polymers with High Electron Affinity by Replacing a C-C Unit with a B←N Unit. Angew Chem 54:3648–3652. https://doi.org/10.1002/anie.201411973

    Article  CAS  Google Scholar 

  50. Kumar M, Gupta MK, Rizvi MA, Ansari A (2023) Electronic structures and ligand effect on redox potential of iron and cobalt complexes: a computational insight. Struct Chem 34:1565–1575. https://doi.org/10.1007/s11224-022-02119-3

    Article  CAS  Google Scholar 

  51. Monika, Ansari A (2022) Electronic structures and energetic of metal(II)-superoxo species: a DFT exploration. Struct Chem 34:825–835. https://doi.org/10.1007/s11224-022-02030-x

    Article  CAS  Google Scholar 

  52. Bhalla P, Tomer N, Goel A et al (2022) Chemoselective detection based on experimental and theoretical calculations of Cu2+ ions via deprotonation of chromone derived probe and its application. J Mol Struct 1264:133251–133251. https://doi.org/10.1016/j.molstruc.2022.133251

    Article  CAS  Google Scholar 

  53. Moghim MT, Jamehbozorgi S, Rezvani M, Ramezani M (2022) Computational investigation on the geometry and electronic structures and absorption spectra of metal-porphyrin-oligo- phenyleneethynylenes-[60] fullerene triads. Spectrochim Acta A Mol Biomol Spectrosc 280:121488–121488. https://doi.org/10.1016/j.saa.2022.121488

    Article  CAS  Google Scholar 

  54. Kumar M, Ansari M, Ansari A (2023) Electronic, geometrical and photophysical facets of five coordinated porphyrin N-heterocyclic carbene transition metals complexes: A theoretical study. Spectrochim Acta A Mol Biomol Spectrosc 284:121774–121774. https://doi.org/10.1016/j.saa.2022.121774

    Article  CAS  PubMed  Google Scholar 

  55. Geerlings P, De Proft F, Langenaeker W (2003) Conceptual Density Functional Theory. Chem Rev 103:1793–1874. https://doi.org/10.1021/cr990029p

    Article  CAS  PubMed  Google Scholar 

  56. Govindarajan M, Karabacak M, Periandy S, Tanuja D (2012) Spectroscopic (FT-IR, FT-Raman, UV and NMR) investigation and NLO, HOMO–LUMO, NBO analysis of organic 2,4,5-trichloroaniline. Spectrochim Acta A Mol Biomol Spectrosc 97:231–245. https://doi.org/10.1016/j.saa.2012.06.014

    Article  CAS  PubMed  Google Scholar 

  57. Mohapatra RK, Mahal A, Ansari A, Kumar M, Guru JP, Sarangi AK, Abdou A, Mishra S, Aljeldah M, AlShehail BM, Alissa M, Garout M, Alsayyah A, Alshehri AA, Saif A, Alqahtani A, Alshehri FA, Alamri AA, Rabaan AA (2023) Comparison of the binding energies of the approved mpox drugs with phytochemicals through molecular docking, MD simulation and ADMET studies - an in silico approach. J Biosaf Biosecurity 5:118–132. https://doi.org/10.1016/j.jobb.2023.09.001

    Article  CAS  Google Scholar 

  58. Ghahramanpour M, Jamehbozorgi S, Rezvani M (2020) The effect of encapsulation of lithium atom on supramolecular triad complexes performance in solar cell by using theoretical approach. Adsorption 26:471–489. https://doi.org/10.1007/s10450-019-00196-1

    Article  CAS  Google Scholar 

  59. Jamehbozorgi S, Ghahramanpour M, Rezvani M (2022) The role of insertion of Li atom in C60-Porphyrin-Metalloporphyrin, M = (V, Cr, Ni, Cu) as dyes in the DSSC by using the theoretical outlook. Int J New Chem 9:102–128. https://doi.org/10.22034/ijnc.2022.1.8

    Article  CAS  Google Scholar 

  60. Mohammadzaheri M, Saeed J, Rezvani M et al (2023) Toward functionalization of ZnO nanotube and monolayer with 5-aminolevulinic acid drug as possible nanocarrier for drug delivery: a DFT based molecular dynamic simulations. Phys Chem Chem Phys 25:21492–21508. https://doi.org/10.1039/d3cp01490h

    Article  CAS  PubMed  Google Scholar 

  61. Rezvani M, Ganji MD, Bozorghi SJ, Niazi A (2018) DFT/TD-semiempirical study on the structural and electronic properties and absorption spectra of supramolecular fullerene-porphyrine-metalloporphyrine triads based dye-sensitized solar cells. Spectrochim Acta A Mol Biomol Spectrosc 194:57–66. https://doi.org/10.1016/j.saa.2017.12.073

    Article  CAS  PubMed  Google Scholar 

  62. Mohapatra RK, Azam M, Mohapatra PK et al (2022) Computational studies on potential new anti-Covid-19 agents with a multi-target mode of action. J King Saud Univ Sci 34:102086–102086. https://doi.org/10.1016/j.jksus.2022.102086

    Article  PubMed  PubMed Central  Google Scholar 

  63. Yadav O, Ansari M, Ansari A (2021) Electronic structures, bonding and energetics of non-heme mono and dinuclear iron-TPA complexes: a computational exploration. Struct Chem 32:2007–2018. https://doi.org/10.1007/s11224-021-01775-1

    Article  CAS  Google Scholar 

  64. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926. https://doi.org/10.1021/cr00088a005

    Article  CAS  Google Scholar 

  65. Natarajan S, Shanmugam G, Martin B, Dhas SA (2008) Growth and characterization of a new semi organic NLO material: L-tyrosine hydrochloride. Cryst Res Technal 43:561–564. https://doi.org/10.1002/crat.200711048

    Article  CAS  Google Scholar 

  66. Bradshaw DS, Andrews DL (2009) Quantum Channels in Nonlinear Optical Processes. J Nonlinear Opt Phys Mater 18:285–299. https://doi.org/10.1142/s0218863509004609

    Article  CAS  Google Scholar 

  67. Chemia DS, Zyss (1987) JE Nonlinear Optical Properties of Organic Molecules and Crystals (Volume 1). Orlando, FL, Academic Press 1–482. https://doi.org/10.1016/B978-0-12-170611-1.X5001-3

  68. Lin YY, Rajesh NP, Raghavan PS et al (2002) Crystal growth of two-component new novel organic NLO crystals. Mater Lett 56:1074–1077. https://doi.org/10.1016/s0167-577x(02)00680-8

    Article  CAS  Google Scholar 

  69. Weinhold F, Landis CR (2005) Valency and bonding: a natural bond and orbital donor-acceptor perspective. Cambridge Univ. Press, Cambridge 1–749. https://doi.org/10.1017/CBO9780511614569

  70. Ansari A, Ansari M, Singha A, Rajaraman G (2017) Interplay of Electronic Cooperativity and Exchange Coupling in Regulating the Reactivity of Diiron(IV)-oxo Complexes towards C−H and O−H Bond Activation. Chem Eur J 23:10110–10125. https://doi.org/10.1002/chem.201701059

    Article  CAS  PubMed  Google Scholar 

  71. Kumar M, Talakkal AK, Mohapatra RK, Ansari A (2023) Photophysical properties of four-membered BN3 heterocyclic compounds: theoretical insights. J Mol Model 29:336. https://doi.org/10.1007/s00894-023-05731-0

    Article  CAS  PubMed  Google Scholar 

  72. Azam M, Sahoo PK, Mohapatra RK et al (2022) Structural investigations, Hirsfeld surface analyses, and molecular docking studies of a phenoxo-bridged binuclear Zinc(II) complex. J Mol Struct 1251:132039–132039. https://doi.org/10.1016/j.molstruc.2021.132039

    Article  CAS  Google Scholar 

  73. Yadav O, Kumar M, Mittal H et al (2022) Theoretical exploration on structures, bonding aspects and molecular docking of α-aminophosphonate ligated copper complexes against SARS-CoV-2 proteases. Front Pharmacol 13:982484–982484. https://doi.org/10.3389/fphar.2022.982484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sharma MK, Soumen S, Mahawar P et al (2019) Donor–acceptor-stabilised germanium analogues of acid chloride, ester, and acyl pyrrole compounds: synthesis and reactivity. Chem Sci 10:4402–4411. https://doi.org/10.1039/c8sc05380d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yadav S, Kumar R, Vipin Raj K et al (2020) Amidinato Germylene-Zinc Complexes: Synthesis, Bonding, and Reactivity. Chem Asian J 19:3116–3121. https://doi.org/10.1002/asia.202000807

    Article  CAS  Google Scholar 

  76. Yadav O, Ansari M, Ansari A (2022) Electronic structures, bonding aspects and spectroscopic parameters of homo/hetero valent bridged dinuclear transition metal complexes. Spectrochim Acta A Mol Biomol Spectrosc 278:121331–121331. https://doi.org/10.1016/j.saa.2022.121331

    Article  CAS  PubMed  Google Scholar 

  77. Ahmad M, Khalid M, Khan MS et al (2020) Exploring catecholase activity in dinuclear Mn(II) and Cu(II) complexes: an experimental and theoretical approach. New J Chem 44:7998–8009. https://doi.org/10.1039/d0nj00605j

    Article  CAS  Google Scholar 

  78. Shahid M, Mantasha I, Khan S et al (2021) Elucidating the contribution of solvent on the catecholase activity in a mononuclear Cu(II) system: An experimental and theoretical approach. J Mol Struct 1244:130878–130878. https://doi.org/10.1016/j.molstruc.2021.130878

    Article  CAS  Google Scholar 

  79. Ahmed M, Gupta M, Ansari A (2023) DFT and TDDFT exploration on the role of pyridyl ligands with copper toward bonding aspects and light harvesting. J Mol Model 29:358. https://doi.org/10.1007/s00894-023-05765-4

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

MA and SSM would like to thank the Central University of Haryana for the financial support. AA would like to thank the Central University of Haryana for providing computing facilities.

Funding

The authors declare that no grants were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Mukhtar Ahmed: calculations, validation, visualization, writing-original draft; Sumit Sahil Malhotra: validation, visualization, writing-original draft, Oval Yadav: validation, visualization, writing-original draft; Charu Saini: calculations, visualization; Monika: editing; Neha Sharma: editing; Manoj Kumar Gupta: editing; Ranjan Kumar Mohapatra: editing, Azaj Ansari: supervised this research, editing.

Corresponding author

Correspondence to Azaj Ansari.

Ethics declarations

Competing interests

The authors declare no competing financial interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors provided consent to publish.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3012 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, M., Malhotra, S.S., Yadav, O. et al. DFT and TDDFT exploration on electronic transitions and bonding aspect of DPA and PTDC ligated transition metal complexes. J Mol Model 30, 122 (2024). https://doi.org/10.1007/s00894-024-05912-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-024-05912-5

Keywords

Navigation