Skip to main content
Log in

The effect of different solvents and acidifying reagents on the anthocyanin profiles and antioxidant capacity of purple corn

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

By-products (silk, cob, and husk) from purple corn processing are rich in anthocyanins, which can be used as natural antioxidants. In this work, the polyphenol and anthocyanin content and the chemical composition of solvent extracts from silk, cob, and husk were examined separately. The total anthocyanin (TAC) and polyphenols (TPC) content of purple corn silk is higher than the cob and husk. Ethanol can significantly improve the TAC in various purple corn extracts. Anthocyanins were identified using high-performance liquid chromatography coupled with an electrospray ionization mass spectrometer (HPLC-ESI-MS), and their composition was quantified using a diode matrix detector (DAD) coupled HPLC. The results of the quantitative analysis demonstrated that cyanidin derivatives were the main components of purple corn extracts, regardless of the solvent used. The selection of solvent and acidifier had a significant effect on the composition of anthocyanins. Ethanol and water can promote the dissolution of cyanidin derivatives, while methanol provides a solid incentive to extract peonidin derivatives. Formic acid may favor the production of malonyl anthocyanin, whereas hydrochloric acid may favor the production of succinyl anthocyanin. The results of the correlation analysis showed that the TAC primarily determined the antioxidant capacity of the purple maize extract in different extracts. The predictive evaluation of the VIP analysis shows that the higher relative concentration of C3dM, C3M, Pg3dM, and Pg3M in the water extract may contribute to its higher antioxidant power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

HPLC:

High-performance liquid chromatography

DAD:

Diode array detector

rpm:

Round per minute

DPPH:

1,1-Diphenyl-2-picrylhydrazyl radical

ABTS:

2,2′-Azino-bis (3-ethylben-zothiazolin-6-sulfonate) diammonium salt

TPTZ:

2,4,6-Tri(2-pyridyl)-s-triazine

FRAP:

Ferric ion reducing antioxidant power

TAC:

Total anthocyanin content

TPC:

Total polyphenol content

EAC:

Equivalent antioxidant capacities

PCA:

Principal component analysis

HCA:

Hierarchical cluster analysis

PLS-DA:

Partial least square discriminant analysis

OPLS-DA:

Positive cross-partial least squares discriminant analysis

VIP:

Variables in the predicted

C3G:

Cyanidin-3-glucoside

Pg3G:

Pelargonidin-3-glucoside

P3G:

Peonidin-3-glucoside

C3M:

Cyanidin-3-(6″-malonyl)-glucoside

C3S:

Cyanidin-3-(6″-succinyl)-glucoside

Pg3M:

Pelargonidin-3-(6″-malonyl)-glucoside

C3dM:

Cyanidin-3-(3″,6″-dimalonyl)-glucoside

P3M:

Peonidin-3-(6″-malonyl)-glucoside

Pg3dM:

Pelargonidin-3-(3″,6″-dimalonyl)-glucoside

C3E:

Cyanidin-3-(6″-ethyl-malonyl)-glucoside

C3dS:

Cyanidin-3-(6″-disuccinyl)-glucoside

P3dS:

Peonidin-3-(6″-disuccinyl)-glucoside

CD:

Cyanidin derivative

CEM(FA):

Cob extracted with methanol (added by formic acid)

CEE:

Cob extracted with ethanol

CEW:

Cob extracted with water

CEM:

Cob extracted with methanol

HEM(FA):

Husk extracted with methanol (added formic acid)

HEE:

Husk extracted with ethanol

HEW:

Husk extracted with water

HEM:

Husk extracted with methanol

SEM(FA):

Silk extracted with methanol (added by formic acid)

SEE:

Silk extracted with ethanol

SEW:

Silk extracted with water

SEM:

Silk extracted with methanol

References

  • Abdel-Aal ESM, Akhtar H, Rabalski I, Bryan M (2014) Accelerated, microwave-assisted, and conventional solvent extraction methods affect anthocyanin composition from colored grains. J Food Sci 79(2):C138–C146. https://doi.org/10.1111/1750-3841.12346

    Article  CAS  Google Scholar 

  • Arunachalam K, Parimelazhagan T (2014) Evaluation of nutritional composition and antioxidant properties of underutilized Ficus talboti King fruit for nutraceuticals and food supplements. J Food Sci Technol 51(7):1260–1268

    CAS  PubMed  Google Scholar 

  • Aruoma OI (1998) Free radicals, oxidative stress, and antioxidants in human health and disease. J Am Oil Chem Soc 75(2):199–212

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cevallos-Casals BA, Cisneros-Zevallos L (2004) Stability of anthocyanin-based aqueous extracts of Andean purple corn and red-fleshed sweet potato compared to synthetic and natural colorants. Food Chem 86(1):69–77. https://doi.org/10.1016/j.foodchem.2003.08.011

    Article  CAS  Google Scholar 

  • Charepalli V, Reddivari L, Vadde R, Walia S, Radhakrishnan S, Vanamala J (2016) Eugenia jambolana (Java plum) fruit extract exhibits anti-cancer activity against early stage human HCT-116 colon cancer cells and colon cancer stem cells. Cancers 8(3):29

    PubMed Central  Google Scholar 

  • Chatham LA, West L, Berhow MA, Vermillion KE, Juvik JA (2018) Unique flavanol-anthocyanin condensed forms in Apache red purple corn. J Agric Food Chem 66(41):10844–10854

    CAS  PubMed  Google Scholar 

  • Chen C, Somavat P, Singh V, de Mejia EG (2017) Chemical characterization of proanthocyanidins in purple, blue, and red maize coproducts from different milling processes and their anti-inflammatory properties. Ind Crops Prod 109:464–475. https://doi.org/10.1016/j.indcrop.2017.08.046

    Article  CAS  Google Scholar 

  • Colombo R, Ferron L, Papetti A (2021) Colored corn: an up-date on metabolites extraction, health implication, and potential use. Molecules 26(1):199

    CAS  PubMed Central  Google Scholar 

  • Cristianini M, Guillén Sánchez JS (2020) Extraction of bioactive compounds from purple corn using emerging technologies: a review. J Food Sci 85(4):862–869

    CAS  PubMed  Google Scholar 

  • Fukamachi K, Imada T, Ohshima Y, Xu J, Tsuda H (2008) Purple corn color suppresses Ras protein level and inhibits 7,12-dimethylbenz a anthracene-induced mammary carcinogenesis in the rat. Cancer Sci 99(9):1841–1846. https://doi.org/10.1111/j.1349-7006.2008.00895.x

    Article  CAS  PubMed  Google Scholar 

  • Gallegos SR, Arrunátegui GT, Valenzuela R, Rincón-Cervera MÁ, Espinoza MEV (2018) Adding a purple corn extract in rats supplemented with chia oil decreases gene expression of SREBP-1c and retains Δ5 and Δ6 hepatic desaturase activity, unmodified the hepatic lipid profile. Prostaglandins Leukot Essent Fatty Acids 132:1–7

    Google Scholar 

  • Gk A, Jw B, Rk B, Up B (2021) Evaluation of glycerol usage for the extraction of anthocyanins from black chokeberry and elderberry fruits. J Appl Res Med Aromat Plants 22:100296

    Google Scholar 

  • Hagiwara A, Miyashita K, Nakanishi T, Sano M, Tamano S, Kadota T, Koda T, Nakamura M, Imaida K, Ito N, Shirai T (2001) Pronounced inhibition by a natural anthocyanin, purple corn color, of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)-associated colorectal carcinogenesis in male F344 rats pretreated with 1,2-dimethylhydrazine. Cancer Lett 171(1):17–25. https://doi.org/10.1016/S0304-3835(01)00510-9

    Article  CAS  PubMed  Google Scholar 

  • Han J, Wei FX (2010) Determination of Polyphenols in Apple Pomace by Folin-Ciocalteu Colorimetry[J]. Food Scie 31(4):179–182

    CAS  Google Scholar 

  • Harakotr B, Suriharn B, Scott MP, Lertrat K (2015) Genotypic variability in anthocyanins, total phenolics, and antioxidant activity among diverse waxy corn germplasm. Euphytica 203(2):237–248. https://doi.org/10.1007/s10681-014-1240-z

    Article  CAS  Google Scholar 

  • Hassani D, Liu H, Chen Y, Wan Z, Zhuge Q, Li S (2015) Analysis of biochemical compounds and differentially expressed genes of the anthocyanin biosynthetic pathway in variegated peach flowers. Genet Mol Res 14(4):13425–13426

    CAS  PubMed  Google Scholar 

  • Herrera-Sotero MY, Cruz-Hernández CD, Oliart-Ros RM, Chávez-Servia JL, Guzmán-Gerónimo RI, González-Covarrubias V, Cruz-Burgos M, Rodríguez-Dorantes M (2020) Anthocyanins of blue corn and tortilla arrest cell cycle and induce apoptosis on breast and prostate cancer cells. Nutr Cancer 72(5):768–777

    CAS  PubMed  Google Scholar 

  • Hong HT, Netzel ME, O’Hare TJ (2020) Optimisation of extraction procedure and development of LC–DAD–MS methodology for anthocyanin analysis in anthocyanin-pigmented corn kernels. Food Chem 319(1):126515

    CAS  PubMed  Google Scholar 

  • Hong SH, Heo JI, Kim JH, Kwon SO, Yeo KM, Bakowska-Barczak AM, Kolodziejczyk P, Ryu OH, Choi MK, Kang YH, Lim SS, Suh HW, Huh SO, Lee JY (2013) Antidiabetic and beta cell-protection activities of purple corn anthocyanins. Biomol Ther 21(4):284–289. https://doi.org/10.4062/biomolther.2013.016

    Article  CAS  Google Scholar 

  • Huang B, Wang Z, Park JH, Ryu OH, Choi MK, Lee J-Y, Kang Y-H, Lim SS (2015) Anti-diabetic effect of purple corn extract on C57BL/KsJ db/db mice. Nurs Res Pract 9(1):22–29

    CAS  Google Scholar 

  • Jomova K, Hudecova L, Lauro P, Simunková M, Barbierikova Z, Malcek M, Alwasel SH, Alhazza IM, Rhodes CJ, Valko M (2022) The effect of luteolin on DNA damage mediated by a copper catalyzed Fenton reaction. J Inorg Biochem 226:111635

    CAS  PubMed  Google Scholar 

  • Khamphasan P, Lomthaisong K, Harakotr B, Ketthaisong D, Scott MP, Lertrat K, Suriharn B (2018) Genotypic variation in anthocyanins, phenolic compounds, and antioxidant activity in cob and husk of purple field corn. Agronomy 8(11):271

    CAS  Google Scholar 

  • Lao F, Giusti MM (2016) Quantification of purple corn (Zea mays L.) anthocyanins using spectrophotometric and HPLC approaches: method comparison and correlation. Food Anal Methods 9(5):1367–1380

    Google Scholar 

  • Lao F, Giusti MM (2018) Extraction of purple corn (Zea mays L.) cob pigments and phenolic compounds using food-friendly solvents. J Cereal Sci 80:87–93

    CAS  Google Scholar 

  • Lech K, Jarosz M (2011) Novel methodology for the extraction and identification of natural dyestuffs in historical textiles by HPLC–UV–Vis–ESI MS. Case study: chasubles from the Wawel Cathedral collection. Anal Bioanal Chem 399(9):3241–3251

    CAS  PubMed  Google Scholar 

  • Li A-N, Li S, Zhang Y-J, Xu X-R, Chen Y-M, Li H-B (2014) Resources and biological activities of natural polyphenols. Nutrients 6(12):6020–6047

    PubMed  PubMed Central  Google Scholar 

  • Li C-Y, Kim H-W, Won SR, Min H-K, Park K-J, Park J-Y, Ahn M-S, Rhee H-I (2008) Corn husk as a potential source of anthocyanins. J Agric Food Chem 56(23):11413–11416

    CAS  PubMed  Google Scholar 

  • Li J, Li X-D, Zhang Y, Zheng Z-D, Qu Z-Y, Liu M, Zhu S-H, Liu S, Wang M, Qu L (2013a) Identification and thermal stability of purple-fleshed sweet potato anthocyanins in aqueous solutions with various pH values and fruit juices. Food Chem 136(3):1429–1434

    CAS  PubMed  Google Scholar 

  • Li J, Li XD, Zhang Y, Zheng ZD, Qu ZY, Liu M, Zhu SH, Liu S, Wang M, Qu L (2013b) Identification and thermal stability of purple-fleshed sweet potato anthocyanins in aqueous solutions with various pH values and fruit juices. Food Chem 136(3–4):1429–1434. https://doi.org/10.1016/j.foodchem.2012.09.054

    Article  CAS  PubMed  Google Scholar 

  • Liang XL, Wang XL, Li Z, Hao QH, Wang SY (2010) Improved in vitro assays of superoxide anion and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity of isoflavones and isoflavone metabolites. J Agric Food Chem 58(22):11548

    CAS  PubMed  Google Scholar 

  • Lim KT, Son YO, Lee JC, Lim JC, Chung Y (2002) Effects of Glycoprotein from Ulmus Davidiana Nakai on hydroxyl radical induced-cytotoxicity, and on activation of nuclear factor-kappa B and activator protein-1 in cultured mouse primary thymocytes. Food Sci Biotechnol 11:172–178

    CAS  Google Scholar 

  • Liu H, Wang X, Warburton ML, Wen W, Jin M, Deng M, Liu J, Tong H, Pan Q, Yang X (2015) Genomic, transcriptomic, and phenomic variation reveals the complex adaptation of modern maize breeding. Mol Plant 8(6):871–884

    CAS  PubMed  Google Scholar 

  • Long N, Suzuki S, Sato S, Naiki-Ito A, Sakatani K, Shirai T, Takahashi S (2013) Purple corn color inhibition of prostate carcinogenesis by targeting cell growth pathways. Cancer Sci 104(3):298–303. https://doi.org/10.1111/cas.12078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Martinez LX, Oliart-Ros RM, Valerio-Alfaro G, Lee CH, Parkin KL, Garcia HS (2009) Antioxidant activity, phenolic compounds and anthocyanins content of eighteen strains of Mexican maize. LWT-Food Sci Technol 42(6):1187–1192. https://doi.org/10.1016/j.lwt.2008.10.010

    Article  CAS  Google Scholar 

  • Lopez-Martinez LX, Parkin KL, Garcia HS (2014) Antioxidant and quinone reductase inducing activities of ethanolic fractions from purple maize. LWT-Food Sci Technol 59(1):270–275

    CAS  Google Scholar 

  • Luna-Vital DA, Weiss M, De Mejia EG (2017) Comparative effect of an anthocyanin-rich extract from purple corn and pure anthocyanins on 3T3-L1 adipocytes under different physiological conditions. FASEB J 31:2

    Google Scholar 

  • Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez J, Buckler E, Doebley J (2002) A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci 99(9):6080–6084

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mazewski C, Liang K, de Mejia EG (2017) Inhibitory potential of anthocyanin-rich purple and red corn extracts on human colorectal cancer cell proliferation in vitro. J Funct Foods 34:254–265. https://doi.org/10.1016/j.jff.2017.04.038

    Article  CAS  Google Scholar 

  • Mohamed G, Lertrat K, Suriharn B (2017) Phenolic compound, anthocyanin content, and antioxidant activity in some parts of purple waxy corn across maturity stages and locations. Int Food Res J 24(2):490

    Google Scholar 

  • Moure A, Cruz JM, Franco D, Domı́nguez JM, Sineiro J, Domı́nguez H, Núñez M, Parajó J (2001) Natural antioxidants from residual sources. Food Chem 72(2):145–171

  • Muangrat R, Williams PT, Saengcharoenrat P (2017) Subcritical solvent extraction of total anthocyanins from dried purple waxy corn: influence of process conditions. J Food Process Preserv 41(6):e13252

    Google Scholar 

  • Naczk M, Shahidi F (2006) Phenolics in cereals, fruits and vegetables: occurrence, extraction and analysis. J Pharm Biomed Anal 41(5):1523–1542

    CAS  PubMed  Google Scholar 

  • Nankar AN, Dungan B, Paz N, Sudasinghe N, Schaub T, Holguin FO, Pratt RC (2016) Quantitative and qualitative evaluation of kernel anthocyanins from southwestern United States blue corn. J Sci Food Agric 96(13):4542–4552

    CAS  PubMed  Google Scholar 

  • Nazareth TDM, Luz C, Torrijos R, Quiles JM, Luciano FB, Mañes J, Meca G (2019) Potential application of lactic acid bacteria to reduce aflatoxin B1 and fumonisin B1 occurrence on corn kernels and corn ears. Toxins 12(1):21

    PubMed Central  Google Scholar 

  • Ono K, Sugihara N, Hirose Y, Katagiri K (2002) An examination of optimal extraction solvents for anthocyanin pigments from black rice produced in Gifu. Gifu City Womens Coll Res Bull 52:135–138

    Google Scholar 

  • Ozgen M, Reese RN, Tulio AZ, Scheerens JC, Miller AR (2006) Modified 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2’-diphenyl-1-picrylhydrazyl (DPPH) methods. J Agric Food Chem 54(4):1151

    CAS  PubMed  Google Scholar 

  • Paucar-Menacho LM, Martinez-Villaluenga C, Duenas M, Frias J, Penas E (2017) Optimization of germination time and temperature to maximize the content of bioactive compounds and the antioxidant activity of purple corn (Zea mays L.) by response surface methodology. LWT-Food Sci Technol 76:236–244

    CAS  Google Scholar 

  • Peniche-Pavía HA, Tiessen A (2020) Anthocyanin profiling of maize grains using DIESI-MSQD reveals that cyanidin-based derivatives predominate in purple corn, whereas pelargonidin-based molecules occur in red-pink varieties from Mexico. J Agric Food Chem 68(21):5980–5994. https://doi.org/10.1021/acs.jafc.9b06336

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Jiménez J, Arranz S, Tabernero M, Díaz-Rubio M, Serrano J, Goñi I, Saura-Calixto F (2008) Updated methodology to determine antioxidant capacity in plant foods, oils and beverages: extraction, measurement and expression of results. Food Res Int 41(3):274–285

    Google Scholar 

  • Petroni K, Trinei M, Fornari M, Calvenzani V, Marinelli A, Micheli L, Pilu R, Matros A, Mock H-P, Tonelli C (2017) Dietary cyanidin 3-glucoside from purple corn ameliorates doxorubicin-induced cardiotoxicity in mice. Nutr Metab Cardiovasc Dis 27(5):462–469

    CAS  PubMed  Google Scholar 

  • Ramos-Escudero F, Muñoz AM, Alvarado-Ortíz C, Alvarado Á, Yáñez J (2012) Purple corn (Zea mays L.) phenolic compounds profile and its assessment as an agent against oxidative stress in isolated mouse organs. J Med Food 15(2):206–215

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ranum P, Peña-Rosas JP, Garcia-Casal MN (2014) Global maize production, utilization, and consumption. Ann N Y Acad Sci 1312(1):105–112

    PubMed  Google Scholar 

  • Serna-Saldivar SO, Carrillo EP (2019) Chapter 16—food uses of whole corn and dry-milled fractions. In: Serna-Saldivar SO (ed) Corn, 3rd edn. AACC International Press, Oxford, pp 435–467

    Google Scholar 

  • Shen S, Wang J, Zhuo Q, Chen X, Liu T, Zhang S-Q (2018) Quantitative and discriminative evaluation of contents of phenolic and flavonoid and antioxidant competence for Chinese honeys from different botanical origins. Molecules 23(5):1110

    PubMed Central  Google Scholar 

  • Simunkova M, Barbierikova Z, Jomova K, Hudecova L, Lauro P, Alwasel SH, Alhazza I, Rhodes CJ, Valko M (2021) Antioxidant vs. prooxidant properties of the flavonoid, kaempferol, in the presence of cu (ii) ions: a ros-scavenging activity, fenton reaction and dna damage study. Int J Mol Sci 22(4):1619

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siyuan S, Tong L, Liu R (2018) Corn phytochemicals and their health benefits. Food Sci Human Wellness 7(3):185–195

    Google Scholar 

  • Sulaiman SF, Sajak A, Ooi KL, Seow EM (2011) Effect of solvents in extracting polyphenols and antioxidants of selected raw vegetables. J Food Compos Anal 24(4–5):506–515

    CAS  Google Scholar 

  • Tangwongchai R, Lertrat K, Saikaew K (2018) Influence of variety and maturity on bioactive compounds and antioxidant activity of purple waxy corn (Zea mays L. var. ceratina). Int Food Res J 25(5):1985–1995

    Google Scholar 

  • Van Heerwaarden J, Doebley J, Briggs WH, Glaubitz JC, Goodman MM, Gonzalez JDJS, Ross-Ibarra J (2011) Genetic signals of origin, spread, and introgression in a large sample of maize landraces. Proc Natl Acad Sci 108(3):1088–1092

    PubMed  Google Scholar 

  • Volden J, Bengtsson GB, Wicklund T (2009) Glucosinolates, l-ascorbic acid, total phenols, anthocyanins, antioxidant capacities and colour in cauliflower (Brassica oleracea L. ssp. botrytis); effects of long-term freezer storage. Food Chem 112(4):967–976

    CAS  Google Scholar 

  • Wang D, Lei Y, Ma Y, Zhang L, Zhao X (2014) Inhibition of ALV-A-induced apoptosis in DF-1 cells via inactivation of nuclear transcription factor κB by anthocyanins from purple corn (Zea mays L.). J Funct Foods 10:274–282

    CAS  Google Scholar 

  • Warburton ML, Wilkes G, Taba S, Charcosset A, Mir C, Dumas F, Madur D, Dreisigacker S, Bedoya C, Prasanna B (2011) Gene flow among different teosinte taxa and into the domesticated maize gene pool. Genet Resour Crop Evol 58(8):1243–1261

    Google Scholar 

  • Won JY, Son SY, Lee S, Singh D, Lee S, Lee JS, Lee CH (2018) Strategy for screening of antioxidant compounds from two Ulmaceae species based on liquid chromatography-mass spectrometry. Molecules 23(7):1830

    PubMed Central  Google Scholar 

  • Wrolstad RE, Durst RW, Giusti MM, Rodriguez-Saona LE (2002) Analysis of anthocyanins in nutraceuticals. ACS Publications

    Google Scholar 

  • Yang Z, Zhai W (2010a) Identification and antioxidant activity of anthocyanins extracted from the seed and cob of purple corn (Zea mays L.). Innov Food Sci Emerg Technol 11(1):169–176

    CAS  Google Scholar 

  • Yang ZD, Zhai WW (2010b) Identification and antioxidant activity of anthocyanins extracted from the seed and cob of purple corn (Zea mays L.). Innov Food Sci Emerg Technol 11(1):169–176. https://doi.org/10.1016/j.ifset.2009.08.012

    Article  CAS  Google Scholar 

  • Zhang C, Ma Y, Zhao XY, Wang F (2011) Effect of drying treatments on anthocyanin, fumonisin B-1, aflatoxin B-1 content of anthocyanin extract from purple corn (Zea may L.) in north China. In: Kim YH, Yarlagadda P, Zhang XD, Ai ZJ (eds) Advanced materials and structures, pts 1 and 2, vol 335–336. Trans Tech Publications Ltd, Stafa-Zurich, pp 1396–1401

    Google Scholar 

  • Zhao X, Corrales M, Zhang C, Hu X, Ma Y, Tauscher B (2008a) Composition and thermal stability of anthocyanins from Chinese purple corn (Zea mays L.). J Agric Food Chem 56(22):10761–10766. https://doi.org/10.1021/jf8025056

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Zhang C, Guigas C, Ma Y, Corrales M, Tauscher B, Hu X (2009a) Composition, antimicrobial activity, and antiproliferative capacity of anthocyanin extracts of purple corn (Zea mays L.) from China. Eur Food Res Technol 228(5):759–765

    CAS  Google Scholar 

  • Zhu M, Shi ZS, Li FH (2014) Correlation between anthocyanins, total phenolics content and antioxidant activity of purple corn (Zea mays L.). In: Liu HW, Wang G, Zhang GW (eds) Material science, civil engineering and architecture science, mechanical engineering and manufacturing technology II, vol 651–653. Trans Tech Publications Ltd, Stafa-Zurich, pp 220–226

    Google Scholar 

Download references

Acknowledgements

This work was supported by Shanxi Province 1331 engineering advantages of the characteristic subject chemistry construction project (2019-64), Xinzhou Normal University College Student Science and Technology Innovation Project (2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruilin Hao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9146 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, R., Zhang, H., Feng, Y. et al. The effect of different solvents and acidifying reagents on the anthocyanin profiles and antioxidant capacity of purple corn. Chem. Pap. 76, 4691–4704 (2022). https://doi.org/10.1007/s11696-022-02195-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-022-02195-z

Keywords

Navigation