Skip to main content
Log in

Analysis of structural and biomimetic characteristics of the green-synthesized Fe3O4 nanozyme from the fruit peel extract of Punica granatum

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

A vast array of industries routinely uses enzymes to reduce environmental toxicity and to improve the quality of product. Apart from their conventional role in textile and food industries to remove hydrogen peroxide, enzymes like catalases are being used for novel applications as in the development of biosensors. However, being biological in nature, these enzymes are prone to degradation; they are vulnerable to pH and temperature changes that affect their effectiveness. This inconsistent behavior of natural enzymes at high temperatures and pH conditions makes them unsuitable for commercial use. Artificial enzymes are synthesized to compensate the drawbacks of natural enzymes. Metal oxide nanoparticles are prominent among these artificial enzymes. In the current study, iron oxide nanozymes (Fe3O4 NZs) were synthesized from the fruit peel extract of pomegranate using microwave-assisted extraction. Scanning Electron Microscopy (SEM) confirmed the cubical structure of the synthesized Fe3O4 NZs. High-resolution transmission electron microscopy/selected area electron diffraction (HR-TEM/SAED) revealed an average particle size of 17.8 ± 6.5 nm. The nanoparticle was further characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). Further, the enzyme-mimicking activities of the Fe3O4 NZs were tested using peroxidase, catalase, and superoxide dismutase (SOD)-mimicking assays, revealing that the green-synthesized Fe3O4 NZs are good mimics of natural enzymes. This is the first report on the green synthesis, characterization and multi-enzyme-mimicking activity study of metal oxide nanozymes synthesized from the extract of pomegranate fruit peel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4 
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

Fe3O4 NZs:

Iron oxide nanozymes

XRD:

X-ray diffraction spectroscopy

FT-IR:

Fourier transform infrared spectroscopy

DLS:

Dynamic light scattering

XPS:

X-ray photoelectron spectroscopy

HR-TEM:

High-resolution transmission electron microscopy

SAED:

Selected-area electron diffraction

SEM:

Scanning electron microscope

EDAX:

Energy-dispersive analysis of X-rays

SOD:

Superoxide dismutase

OPD:

O-Phenylenediamine

TMB:

3,3',5,5'-Tetramethylbenzidine

HRP:

Horseradish peroxidase

MAE:

Microwave-assisted extraction

LC–MS:

Liquid chromatography–mass spectrometry

TA:

Terephthalic acid

DMF:

Dimethylformamide

HE:

Hydroethidine

GAE:

Gallic acid equivalent

AAE:

Ascorbic acid equivalent

References

  • Abdel-Shafy HI, Mansour MSM (2018) Green synthesis of metallic nanoparticles from natural resources and food waste and their environmental application. Green Met Nanopart Synth Charact Appl. https://doi.org/10.1002/9781119418900.ch11

    Article  Google Scholar 

  • Arsalani S, Guidelli EJ, Silveira MA et al (2019) Magnetic Fe3O4 nanoparticles coated by natural rubber latex as MRI contrast agent. J Magn Magn Mater 475:458–464

    CAS  Google Scholar 

  • Bastos-Arrieta J, Florido A, Pérez-Ràfols C et al (2018) Green synthesis of Ag nanoparticles using grape stalk waste extract for the modification of screen-printed electrodes. Nanomaterials 8:946

    PubMed Central  Google Scholar 

  • Beketova D, Motola M, Sopha H et al (2020) One-step decoration of TiO2 nanotubes with Fe3O4 nanoparticles: synthesis and photocatalytic and magnetic properties. ACS Appl Nano Mater 3:1553–1563

    CAS  Google Scholar 

  • Cao G-J, Jiang X, Zhang H et al (2017) Mimicking horseradish peroxidase and oxidase using ruthenium nanomaterials. RSC Adv 7:52210–52217

    CAS  Google Scholar 

  • Chandra P, Singh R, Arora PK (2020) Microbial lipases and their industrial applications: a comprehensive review. Microb Cell Fact 19:1–42

    Google Scholar 

  • Cheng F-Y, Su C-H, Yang Y-S et al (2005) Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications. Biomaterials 26:729–738

    CAS  PubMed  Google Scholar 

  • Chums-ard W, Fawcett D, Fung CC, Poinern GEJ (2019) Biogenic synthesis of gold nanoparticles from waste watermelon and their antibacterial activity against Escherichia coli and Staphylococcus epidermidis. Int J Res Med Sci 7:2499–2505

    Google Scholar 

  • Deepak P, Amutha V, Kamaraj C, et al (2019) Chemical and green synthesis of nanoparticles and their efficacy on cancer cells. In: Green Synthesis, Characterization and Applications of Nanoparticles. Elsevier, pp 369–387

  • Demirezen DA, Yıldız YŞ, Yılmaz Ş, Yılmaz DD (2019) Green synthesis and characterization of iron oxide nanoparticles using Ficus carica (common fig) dried fruit extract. J Biosci Bioeng 127:241–245

    Google Scholar 

  • Duarte L, Matte CR, Bizarro CV, Ayub MAZ (2020) Review transglutaminases: part II—industrial applications in food, biotechnology, textiles and leather products. World J Microbiol Biotechnol 36:1–20

    Google Scholar 

  • Dutta B, Shetake NG, Gawali SL et al (2018) PEG mediated shape-selective synthesis of cubic Fe3O4 nanoparticles for cancer therapeutics. J Alloys Compd 737:347–355

    CAS  Google Scholar 

  • Fan K, Wang H, Xi J et al (2017) Optimization of Fe 3 O 4 nanozyme activity via single amino acid modification mimicking an enzyme active site. Chem Commun 53:424–427

    CAS  Google Scholar 

  • Fernandes MRC, Huang X, Abbenhuis HCL, Hensen EJM (2019) Lignin oxidation with an organic peroxide and subsequent aromatic ring opening. Int J Biol Macromol 123:1044–1051

    CAS  PubMed  Google Scholar 

  • Feștilă I, Mireșan V, Răducu C et al (2012) Evaluation of oxidative stress in dairy cows through antioxidant enzymes glutathione peroxidase (GPX) and superoxide dismutase (SOD). Bull Univ Agric Sci Vet Med Cluj-Napoca Anim Sci Biotechnol 69:107–110

    Google Scholar 

  • Gao L, Zhuang J, Nie L et al (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2:577–583

    CAS  PubMed  Google Scholar 

  • Gao L, Fan K, Yan X (2020) Iron oxide nanozyme: a multifunctional enzyme mimetics for biomedical application. Nanozymology. https://doi.org/10.1007/978-981-15-1490-6_5

    Article  Google Scholar 

  • Gharib M, Kornowski A, Noei H et al (2019) Protein-protected porous bimetallic AgPt nanoparticles with pH-switchable peroxidase/catalase-mimicking activity. ACS Mater Lett 1:310–319

    CAS  Google Scholar 

  • Gomes C, Silva AC, Marques AC et al (2020) Biotechnology applied to cosmetics and aesthetic medicines. Cosmetics 7:33

    CAS  Google Scholar 

  • Herget K, Frerichs H, Pfitzner F et al (2020) Functional enzyme mimics for oxidative halogenation reactions that combat biofilm formation. Nanozymology. https://doi.org/10.1007/978-981-15-1490-6_8

    Article  Google Scholar 

  • Ibrahim HMM (2015) Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J Radiat Res Appl Sci 8:265–275

    Google Scholar 

  • Izadiyan Z, Shameli K, Miyake M et al (2020) Cytotoxicity assay of plant-mediated synthesized iron oxide nanoparticles using Juglans regia green husk extract. Arab J Chem 13:2011–2023

    CAS  Google Scholar 

  • Jamkhande PG, Ghule NW, Bamer AH, Kalaskar MG (2019) Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. J Drug Deliv Sci Technol 53:101174

    CAS  Google Scholar 

  • Jia H, Yang D, Han X et al (2016) Peroxidase-like activity of the Co 3 O 4 nanoparticles used for biodetection and evaluation of antioxidant behavior. Nanoscale 8:5938–5945

    CAS  PubMed  Google Scholar 

  • Jiang L, Fernandez-Garcia S, Tinoco M et al (2017) Improved oxidase mimetic activity by praseodymium incorporation into ceria nanocubes. ACS Appl Mater Interfaces 9:18595–18608

    CAS  PubMed  Google Scholar 

  • Kant Bhatia S, Vivek N, Kumar V et al (2021) Molecular biology interventions for activity improvement and production of industrial enzymes. Bioresour Technol 324:124596. https://doi.org/10.1016/j.biortech.2020.124596

    Article  CAS  PubMed  Google Scholar 

  • Karade VC, Waifalkar PP, Dongle TD et al (2017) Greener synthesis of magnetite nanoparticles using green tea extract and their magnetic properties. Mater Res Express 4:96102

    Google Scholar 

  • Karaseva EI, Losev IP, Metelitsa DI (2002) Peroxidase-catalyzed oxidation of 3,3’,5,5’-tetramethylbenzidine in the presence of 2,4-dinitrosoresorcinol and polydisulfide derivatives of resorcinol and 2,4-dinitrosoresorcinol. Bioorg Khim 28:147–155. https://doi.org/10.1023/a:1015069424251

    Article  CAS  PubMed  Google Scholar 

  • Kaur H, Kaur S, Singh J et al (2019) Expanding horizon: green synthesis of TiO2 nanoparticles using Carica papaya leaves for photocatalysis application. Mater Res Express 6:95034

    CAS  Google Scholar 

  • Khatami M, Alijani HQ, Fakheri B et al (2019) Super-paramagnetic iron oxide nanoparticles (SPIONs): Greener synthesis using Stevia plant and evaluation of its antioxidant properties. J Clean Prod 208:1171–1177

    CAS  Google Scholar 

  • Khyade VB, Hershko A, Dongare SK (2019) Euler’s line for enzyme kinetics. Int J Recent Acad Res 1:532–542

    Google Scholar 

  • Koli RR, Phadatare MR, Sinha BB et al (2019) Gram bean extract-mediated synthesis of Fe3O4 nanoparticles for tuning the magneto-structural properties that influence the hyperthermia performance. J Taiwan Inst Chem Eng 95:357–368

    CAS  Google Scholar 

  • Lesiak B, Rangam N, Jiricek P et al (2019) Surface study of Fe3O4 nanoparticles functionalized with biocompatible adsorbed molecules. Front Chem 7:642

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li X (2012) Improved pyrogallol autoxidation method: a reliable and cheap superoxide-scavenging assay suitable for all antioxidants. J Agric Food Chem 60:6418–6424

    CAS  PubMed  Google Scholar 

  • Li H, Zhang W, Fu Y et al (2020a) A novel method for simultaneously screening superoxide anion scavengers and xanthine oxidase inhibitors using hydroethidine as a fluorescent probe coupled with high-performance liquid chromatography-mass spectrometry. Anal Methods 12:255–263. https://doi.org/10.1039/C9AY02059D

    Article  CAS  Google Scholar 

  • Li X, Yang X, Cheng X et al (2020b) Highly dispersed Pt nanoparticles on ultrasmall EMT zeolite: A peroxidase-mimic nanoenzyme for detection of H2O2 or glucose. J Colloid Interface Sci 570:300–311

    CAS  PubMed  Google Scholar 

  • Lu W, Shen Y, Xie A, Zhang W (2010) Green synthesis and characterization of superparamagnetic Fe3O4 nanoparticles. J Magn Magn Mater 322:1828–1833. https://doi.org/10.1016/j.jmmm.2009.12.035

    Article  CAS  Google Scholar 

  • Ma B, Li S, Wang S et al (2018) Effect of Fe3O4 nanoparticles on composition and spectroscopic characteristics of extracellular polymeric substances from activated sludge. Process Biochem 75:212–220

    CAS  Google Scholar 

  • Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474

    CAS  PubMed  Google Scholar 

  • Meng X, Gao L, Fan K, Yan X (2020) Nanozyme-based tumor theranostics. In: Nanozymology. Springer, pp 425–457

  • Mishra A, Ahmad R, Perwez M, Sardar M (2016) Reusable green synthesized biomimetic magnetic nanoparticles for glucose and H2O2 detection. Bionanoscience 6:93–102

    Google Scholar 

  • Naganuma T (2017) Shape design of cerium oxide nanoparticles for enhancement of enzyme mimetic activity in therapeutic applications. Nano Res 10:199–217

    CAS  Google Scholar 

  • Nnadozie EC, Ajibade PA (2020) Green synthesis and characterization of magnetite (Fe3O4) nanoparticles using Chromolaena odorata root extract for smart nanocomposite. Mater Lett 263:127145

    CAS  Google Scholar 

  • Rasheed RT, Mansoor HS, Mansoor AS (2020) New colorimetric method to determine catalase mimic activity. Mater Res Express 7:25405. https://doi.org/10.1088/2053-1591/ab706b

    Article  CAS  Google Scholar 

  • Ravikumar KVG, Sudakaran SV, Ravichandran K et al (2019) Green synthesis of NiFe nano particles using Punica granatum peel extract for tetracycline removal. J Clean Prod 210:767–776

    CAS  Google Scholar 

  • Robic A, Ullmann C, Auffray P et al (2017) Enzymes for Industrial Applications. OCL 24:D404. https://doi.org/10.1051/ocl/2017027

    Article  Google Scholar 

  • Saif S, Tahir A, Asim T et al (2019) Polymeric nanocomposites of iron-oxide nanoparticles (IONPs) synthesized using terminalia chebula leaf extract for enhanced adsorption of arsenic (V) from water. Colloids and Interfaces 3:17

    CAS  Google Scholar 

  • Saiphaneendra B, Saxena T, Singh SA et al (2017) Synergistic effect of co-existence of hematite (α-Fe2O3) and magnetite (Fe3O4) nanoparticles on graphene sheet for dye adsorption. J Environ Chem Eng 5:26–37

    CAS  Google Scholar 

  • Sari IP, Yulizar Y (2017) Green synthesis of magnetite (Fe3O4) nanoparticles using Graptophyllum pictum leaf aqueous extract. IOP Conf Ser Mater Sci Eng 191:12014. https://doi.org/10.1088/1757-899x/191/1/012014

    Article  CAS  Google Scholar 

  • Sathishkumar G, Logeshwaran V, Sarathbabu S et al (2018) Green synthesis of magnetic Fe3O4 nanoparticles using Couroupita guianensis Aubl. fruit extract for their antibacterial and cytotoxicity activities. Artif Cells, Nanomedicine, Biotechnol 46:589–598

    CAS  Google Scholar 

  • Seibert E, Tracy TS (2014) Fundamentals of enzyme kinetics. Enzym Kinet Drug Metab. https://doi.org/10.1007/978-1-62703-758-7_2

    Article  Google Scholar 

  • Shang Y, Liu F, Wang Y et al (2020) Enzyme mimic nanomaterials and their biomedical applications. ChemBioChem 21:2408–2418

    CAS  PubMed  Google Scholar 

  • Singh S, Mitra K, Shukla A et al (2017) Brominated graphene as mimetic peroxidase for sulfide ion recognition. Anal Chem 89:783–791

    CAS  PubMed  Google Scholar 

  • Singh R, Upadhyay SK, Singh M et al (2021) Chitin, chitinases and chitin derivatives in biopharmaceutical, agricultural and environmental perspective. Biointerface Res Appl Chem 11:9985–10005

    CAS  Google Scholar 

  • Smith M, Scudiero L, Espinal J et al (2016) Improving the deconvolution and interpretation of XPS spectra from chars by ab initio calculations. Carbon N Y 110:155–171

    CAS  Google Scholar 

  • Sooksai T, Bankeeree W, Lotrakul P et al (2019) Production of cutinase from Fusarium falciforme and its application for hydrophilicity improvement of polyethylene terephthalate fabric. 3 Biotech 9:1–11

    Google Scholar 

  • Stasyuk N, Smutok O, Demkiv O et al (2020) Synthesis, catalytic properties and application in biosensorics of nanozymes and electronanocatalysts: a review. Sensors 20:4509

    CAS  PubMed Central  Google Scholar 

  • Tian R, Sun J, Qi Y et al (2017) Influence of VO2 nanoparticle morphology on the colorimetric assay of H2O2 and glucose. Nanomaterials 7:347

    PubMed Central  Google Scholar 

  • Tufa LT, Jeong K-J, Tran VT, Lee J (2020) Magnetic-field-induced electrochemical performance of a porous magnetoplasmonic Ag@ Fe3O4. Nanoassembly. https://doi.org/10.1021/acsami.9b18639

    Article  Google Scholar 

  • Vazquez-Gonzalez M, Liao W-C, Cazelles R et al (2017) Mimicking horseradish peroxidase functions using Cu2+-modified carbon nitride nanoparticles or Cu2+-modified carbon dots as heterogeneous catalysts. ACS Nano 11:3247–3253

    CAS  PubMed  Google Scholar 

  • Veggi PC, Martinez J, Meireles MAA (2012) Fundamentals of microwave extraction Microwave-Assisted Extraction for Bioactive Compounds (pp. 15–52)

  • Vernekar AA, Sinha D, Srivastava S et al (2014) An antioxidant nanozyme that uncovers the cytoprotective potential of vanadia nanowires. Nat Commun 5:1–13

    Google Scholar 

  • Wang K, Li N, Zhang J et al (2017) Size-selective QD@ MOF core-shell nanocomposites for the highly sensitive monitoring of oxidase activities. Biosens Bioelectron 87:339–344

    CAS  PubMed  Google Scholar 

  • Wang X, Gao XJ, Qin L et al (2019) eg occupancy as an effective descriptor for the catalytic activity of perovskite oxide-based peroxidase mimics. Nat Commun 10:1–8

    Google Scholar 

  • Wei H, Wang E (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42:6060–6093

    CAS  PubMed  Google Scholar 

  • Wei Y, Han B, Hu X et al (2012) Synthesis of Fe3O4 nanoparticles and their magnetic properties. Procedia Eng 27:632–637

    CAS  Google Scholar 

  • Wei X, Chen J, Ali MC et al (2020) Cadmium cobaltite nanosheets synthesized in basic deep eutectic solvents with oxidase-like, peroxidase-like, and catalase-like activities and application in the colorimetric assay of glucose. Microchim Acta 187:314. https://doi.org/10.1007/s00604-020-04298-4

    Article  CAS  Google Scholar 

  • Wen X, Yang J, He B, Gu Z (2008) Preparation of monodisperse magnetite nanoparticles under mild conditions. Curr Appl Phys 8:535–541

    Google Scholar 

  • Yan X, Song Y, Wu X et al (2017) Oxidase-mimicking activity of ultrathin MnO 2 nanosheets in colorimetric assay of acetylcholinesterase activity. Nanoscale 9:2317–2323

    CAS  PubMed  Google Scholar 

  • Yan X, Gao L (2020) Nanozymology: An Overview. In: Nanozymology. Springer, pp 3–16

  • Yang H, Xiao J, Su L et al (2017) Oxidase-mimicking activity of the nitrogen-doped Fe 3 C@ C composites. Chem Commun 53:3882–3885

    CAS  Google Scholar 

  • Yao J, Cheng Y, Zhou M et al (2018) ROS scavenging Mn 3 O 4 nanozymes for in vivo anti-inflammation. Chem Sci 9:2927–2933

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yaow CYL, Sim IEE, Lee FKM, et al (2019) Green Synthesis of Nanoparticles Using Dried Fruit Peel Extract. In: IRC-SET 2018. Springer, pp 9–23

  • Ye H, Mohar J, Wang Q et al (2016) Peroxidase-like properties of Ruthenium nanoframes. Sci Bull 61:1739–1745. https://doi.org/10.1007/s11434-016-1193-9

    Article  CAS  Google Scholar 

  • Yew YP, Shameli K, Miyake M et al (2016) Green synthesis of magnetite (Fe3O4) nanoparticles using seaweed (Kappaphycus alvarezii) extract. Nanoscale Res Lett 11:276. https://doi.org/10.1186/s11671-016-1498-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yilmazel Uçar E (2019) Update on thrombolytic therapy in acute pulmonary thromboembolism

  • Yusefi M, Shameli K, Ali RR et al (2020) Evaluating anticancer activity of plant-mediated synthesized iron oxide nanoparticles using Punica Granatum fruit peel extract. J Mol Struct 1204:127539

    CAS  Google Scholar 

  • Zeng H-H, Qiu W-B, Zhang L et al (2016) Lanthanide coordination polymer nanoparticles as an excellent artificial peroxidase for hydrogen peroxide detection. Anal Chem 88:6342–6348

    CAS  PubMed  Google Scholar 

  • Zhang W, Hu S, Yin J-J et al (2016) Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavengers. J Am Chem Soc 138:5860–5865

    CAS  PubMed  Google Scholar 

  • Zhang S, Zhang D, Zhang X et al (2017) Ultratrace naked-eye colorimetric detection of Hg2+ in wastewater and serum utilizing mercury-stimulated peroxidase mimetic activity of reduced graphene oxide-PEI-Pd nanohybrids. Anal Chem 89:3538–3544

    CAS  PubMed  Google Scholar 

  • Zhou Y, Liu B, Yang R, Liu J (2017) Filling in the gaps between nanozymes and enzymes: challenges and opportunities. Bioconjug Chem 28:2903–2909

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. Amitava Mukherjee, Professor, Higher Academic Grade & Director, CNBT, VIT for his mentorship, support, and valuable suggestions and to Dr. N Chandra Sekaran, Professor, Higher Academic Grade, CNBT, VIT for the facilities provided for the study. Characterization of the nanoparticles was carried out using sophisticated analytical instruments available at prestigious institutes across the country. FT-IR was done at CNBT, VIT; XRD at SAIF, Chandigarh; TEM SAED at STIC, Kochi; LCMS at SAIF, IIT Mumbai; SEM-EDAX and VSM at SAIF, IITM, Madras; XPS at SASTRA University. All the help rendered are duly acknowledged.

Funding

This work was supported by grant from the Department of Science and Technology (DST), Government of India, in the form of project fund (SR/WOS-A/LS-371/2017).

Author information

Authors and Affiliations

Authors

Contributions

DM conceived, designed, and performed the experiments including data analyses, interpretation, and manuscript writing. VA contributed to manuscript writing and data interpretation.

Corresponding author

Correspondence to Deepa Mundekkad.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethics statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 839 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mundekkad, D., Alex, A.V. Analysis of structural and biomimetic characteristics of the green-synthesized Fe3O4 nanozyme from the fruit peel extract of Punica granatum. Chem. Pap. 76, 3863–3878 (2022). https://doi.org/10.1007/s11696-022-02130-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-022-02130-2

Keywords

Navigation